• Title/Summary/Keyword: Pain%3A mechanism

Search Result 207, Processing Time 0.032 seconds

Arginase inhibition by rhaponticin increases L-arginine concentration that contributes to Ca2+-dependent eNOS activation

  • Koo, Bon-Hyeock;Lee, Jonghoon;Jin, Younghyun;Lim, Hyun Kyo;Ryoo, Sungwoo
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.516-521
    • /
    • 2021
  • Although arginase primarily participates in the last reaction of the urea cycle, we have previously demonstrated that arginase II is an important cytosolic calcium regulator through spermine production in a p32-dependent manner. Here, we demonstrated that rhaponticin (RPT) is a novel medicinal-plant arginase inhibitor and investigated its mechanism of action on Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation. RPT was uncompetitively inhibited for both arginases I and II prepared from mouse liver and kidney. It also inhibited arginase activity in both aorta and human umbilical vein endothelial cells (HUVECs). Using both microscope and FACS analyses, RPT treatments induced increases in cytosolic Ca2+ levels using Fluo-4 AM as a calcium indicator. Increased cytosolic Ca2+ elicited the phosphorylations of both CaMKII and eNOS Ser1177 in a time-dependent manner. RPT incubations also increased intracellular L-arginine (L-Arg) levels and activated the CaMKII/AMPK/Akt/eNOS signaling cascade in HUVECs. Treatment of L-Arg and ABH, arginase inhibitor, increased intracellular Ca2+ concentrations and activated CaMKII-dependent eNOS activation in ECs of WT mice, but, the effects were not observed in ECs of inositol triphosphate receptor type 1 knockout (IP3R1-/-) mice. In the aortic endothelium of WT mice, RPT also augmented nitric oxide (NO) production and attenuated reactive oxygen species (ROS) generation. In a vascular tension assay using RPT-treated aortic tissue, cumulative vasorelaxant responses to acetylcholine (Ach) were enhanced, and phenylephrine (PE)-dependent vasoconstrictive responses were retarded, although sodium nitroprusside and KCl responses were not different. In this study, we present a novel mechanism for RPT, as an arginase inhibitor, to increase cytosolic Ca2+ concentration in a L-Arg-dependent manner and enhance endothelial function through eNOS activation.

Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation

  • Jaffal, Sahar Majdi;Al-Najjar, Belal Omar;Abbas, Manal Ahmad
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.262-270
    • /
    • 2021
  • Background: Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel implicated in pain sensation in response to heat, protons, and capsaicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action. Methods: Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 ㎍ CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection of 100 ㎍ O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Frey filament 30, 90, and 150 minutes after CAPS injection. A molecular docking tool, AutoDock 4.2, was used to study the binding energies and intermolecular interactions between O. spinosa constituents and TRPV1 receptor. Results: The ipsilateral ipl injection of O. spinosa before CAPS injection increased PWT in rats at all time points. O. spinosa decreased mechanical allodynia by 5.35-fold compared to a 3.59-fold decrease produced by diclofenac sodium. The ipsilateral pretreatment with TRPV1 antagonist (300 ㎍ 4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide [BCTC]) as well as the β2-adrenoreceptor antagonist (150 ㎍ butoxamine) attenuated the action of O. spinosa. Depending on molecular docking results, the activity of the extract could be attributed to the bindings of campesterol, stigmasterol, and ononin compounds to TRPV1. Conclusions: O. spinosa alleviated CAPS-induced mechanical allodynia through 2 mechanisms: the direct modulation of TRPV1 and the involvement of β2 adrenoreceptor signaling.

Chronic Spinal Epidural Hematoma Related to Kummell's Disease

  • Kim, Heyun-Sung;Lee, Seok-Ki;Kim, Seok-Won;Shin, Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.4
    • /
    • pp.231-233
    • /
    • 2011
  • Chronic spinal epidural hematoma related to Kummell's disease is extremely rare. An 82-year-old woman who had been managed conservatively for seven weeks with the diagnosis of a multi-level osteoporotic compression fracture was transferred to our institute. Lumbar spine magnetic resonance images revealed vertebral body collapse with the formation of a cavitary lesion at L1, and a chronic spinal epidural hematoma extending from L1 to L3. Because of intractable back pain, a percutaneous vertebroplasty was performed. The pain improved dramatically and follow-up magnetic resonance imaging obtained three days after the procedure showed a nearly complete resolution of the hematoma. Here, we present the rare case of a chronic spinal epidural hematoma associated with Kummell's disease and discuss the possible mechanism.

Mechanism of Hyperalgesia Following Cutaneous Inflammation by Complete Freund Adjuvant (Complete Freund Adjuvant에 의한 피부염증에서 통각과민현상의 기전)

  • Jeong, Yong;Leem, Joong-Woo;Chung, Seung-Soo;Kim, Yun-Suk;Yoon, Duck-Mi;Nam, Taick-Sang;Paik, Kwang-Se
    • The Korean Journal of Pain
    • /
    • v.13 no.2
    • /
    • pp.164-174
    • /
    • 2000
  • Background: After an injury to tissue such as the skin, hyperalgesia develops. Hyperalgesia is characterized by an increase in the magnitude of pain evoked by noxious stimuli. It has been postulated that in the mechanism of hyperalgesia (especially secondary hyperalgesia) and allodynia, a sensitization of central nervous system such as spinal dorsal horn may contribute to development of hyperalgesia. However, the precise mechanism is still unclear. In the present study, we investigated the roles of N-methyl-D-aspartate (NMDA) receptor and nitric oxide (NO) system in the mechanism of hyperalgesia, and their relations with c-fos expression Methods: Inflammation was induced by injection of complete Freund adjuvant (CFA) into unilateral hindpaw of Sprague-Dawley rat. Behavioral studies measuring paw withdrawal responses by von Frey filaments and paw withdrawal latencies by radiant heat stimuli and stainings of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase and c-fos immunoreactivity were performed. The effects of MK-801, an NMDA receptor blocker and $N^\omega$-nitro-L-arginine (L-NNA), a nitric oxide synthase (NOS) inhibitor were evaluated. Results: 1) Injection of CFA induced mechanical allodynia, mechanical hyperalgesia and thermal hyperalgesia. And it increased the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 2) MK-801 inhibited mechanical hyperalgesia and thermal hyperalgesia induced by CFA and reduced the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 3) L-NNA inhibited the thermal hyperalgesia and reduced the number of NADPH-diaphorase positive neurons, but did not affect the number of c-fos expression neurons. Conclusions: These results suggest that in the mechanism of mechanical hyperalgesia, NMDA receptor but not NO-system is involved and in the case of thermal hyperalgesia both NMDA receptor and NO system are involved. NO system did not affect the expression of c-fos, but c-fos expression and NOS activity were dependent on the activity of NMDA receptor.

  • PDF

Antinociceptive Effect and the Mechanism of Bee Venom Pharmacopuncture on Inflammatory Pain in the Rat Model of Collagen-induced Arthritis: Mediation by 5HT-3 & Muscarinic Cholinergic Receptors (Collagen-induced Arthritis Rat Model에서 염증성 통증에 대한 봉독약침의 진통효과 및 기전연구: 5HT-3 & Muscarinic Cholinergic Mechanisms에 대한 연구)

  • Seo, Byung-Kwan;Park, Dong-Suk;Baek, Yong-Hyeon
    • Journal of Acupuncture Research
    • /
    • v.28 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • 배경 및 목적 : 봉독약침요법(bee venom pharmacopuncture, BVP)은 rheumatoid arthritis(RA)의 치료에 활용되고 있으나, RA로 인한 염증성 통증에 대한 봉독약침의 진통효과와 specific mechanism은 아직까지 명확하게 밝혀지지 않았다. 이에 본 연구에서는 RA animal model로서 collagen-induced arthritis(CIA) rat model에서 봉독약침의 a1-adrenergic, 5HT-3 그리고 muscarinic cholinergic mechanism을 확인하고자 한다. 방법 : CIA를 유도하기 위하여 male Sprague-Dawley rat에 freund's incomplete adjuvant에 유화(乳化)시킨 bovine type II collagen을 주입하고 14일 후 booster injection 시행하였다. 진통효과는 tail flick latency (TFL)로 평가하였다. 결과 : 관절염의 유도 이후 염증성 통증 역치는 시간이 지나면서 낮아지며, 5주 이후로는 통증 역치에 큰 변화가 없이 유지되었다. 첫 번째 immunization으로부터 5주 경과 후 족삼리($ST_{36}$)에 봉독약침처치(0.25 mg/ kg)를 시행하여 유의한 진통효과를 관찰하였다. 또한 봉독약침의 진통효과는 ondansetron(5HT-3 receptor antagonist, 0.5mg/kg, i.p.), atropine(muscarinic cholinergic receptor antagonist, 1mg/kg, i.p.)의 전처치에 의하여 억제되었으나, prazosin(a1-adrenergic receptor antagonist, 1mg/kg, i.p.)의 전처치에 의해서는 억제되지 않았다. 결론 : 봉독약침은 CIA로 인한 염증성 통증에 유의한 진통효과를 나타내며 그 analgesic mechanism은 5HT-3와 muscarinic cholinergic receptor에 의하여 매개되며 a1-adrenergic receptor에 의하여 매개되지는 않았다.

Effect of Zhongyi paste on inflammatory pain in mice by regulation of the extracellular regulated protein kinases 1/2-cyclooxygenase-2-prostaglandin E2 pathway

  • Xiao, Ailan;Wu, Chuncao;Kuang, Lei;Lu, Weizhong;Zhao, Xin;Kuang, Zhiping;Hao, Na
    • The Korean Journal of Pain
    • /
    • v.33 no.4
    • /
    • pp.335-343
    • /
    • 2020
  • Background: Zhongyi paste is a traditional Chinese medicine herbal paste that is externally applied to reduce inflammation and relieve pain. Methods: An acute foot swelling inflammation model in C57BL/6J mice was established by carrageenan-induced pathogenesis. Zhongyi paste raised the pain threshold and also reduced the degree of swelling in mice with carrageenan-induced foot swelling. Results: Analysis indicated that serum tumor necrosis factor-alpha, interleukin-1 beta, and prostaglandin E2 (PGE2) cytokine levels and PGE2 levels in the paw tissue of the mice were decreased by Zhongyi paste treatment. The quantitative polymerase chain reaction and western blot results showed that Zhongyi paste downregulated the mRNA and protein expression of extracellular signal-regulated kinase 1/2 (ERK1/2), and cyclooxygenase-2 (COX-2), and also downregulated the mRNA expression of PGE2. At the same time, the Zhongyi paste exerted a stronger effect as an external drug than that of indomethacin, which is an oral drug, and voltaren, which is an externally applied drug. Conclusions: Our results indicated that Zhongyi paste is a very effective drug to reduce inflammatory swelling of the foot, and its mechanism of action is related to regulation of the ERK1/2-COX-2-PGE2 pathway.

PDZ Peptide of the ZO-1 Protein Significantly Increases UTP-Induced MUC8 Anti-Inflammatory Mucin Overproduction in Human Airway Epithelial Cells

  • Han Seo;Hyun-Chae Lee;Ki Chul Lee;Doosik Kim;Jiwook Kim;Donghee Kang;Hyung-Joo Chung;Hee-Jae Cha;Jeongtae Kim;Kyoung Seob Song
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.700-709
    • /
    • 2023
  • Mucus hyperproduction and hypersecretion are observed often in respiratory diseases. MUC8 is a glycoprotein synthesized by epithelial cells and generally expressed in the respiratory track. However, the physiological mechanism by which extracellular nucleotides induce MUC8 gene expression in human airway epithelial cells is unclear. Here, we show that UTP could induce MUC8 gene expression through P2Y2-PLCβ3-Ca2+ activation. Because the full-length cDNA sequence of MUC8 has not been identified, a specific siRNA-MUC8 was designed based on the partial cDNA sequence of MUC8. siRNA-MUC8 significantly increased TNF-α production and decreased IL-1Ra production, suggesting that MUC8 may downregulate UTP/P2Y2-induced airway inflammation. Interestingly, the PDZ peptide of ZO-1 protein strongly abolished UTP-induced TNF-α production and increased IL-1Ra production and MUC8 gene expression. In addition, the PDZ peptide dramatically increased the levels of UTP-induced ZO proteins and TEER (trans-epithelial electrical resistance). These results show that the anti-inflammatory mucin MUC8 may contribute to homeostasis, and the PDZ peptide can be a novel therapeutic candidate for UTP-induced airway inflammation.

Synergistic interaction between acetaminophen and L-carnosine improved neuropathic pain via NF-κB pathway and antioxidant properties in chronic constriction injury model

  • Owoyele, Bamidele Victor;Bakare, Ahmed Olalekan;Olaseinde, Olutayo Folajimi;Ochu, Mohammed Jelil;Yusuff, Akorede Munirdeen;Ekebafe, Favour;Fogabi, Oluwadamilare Lanre;Roi, Treister
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.271-279
    • /
    • 2022
  • Background: Inflammation is known to underlie the pathogenesis in neuropathic pain. This study investigated the anti-inflammatory and neuroprotective mechanisms involved in antinociceptive effects of co-administration of acetaminophen and L-carnosine in chronic constriction injury (CCI)-induced peripheral neuropathy in male Wistar rats. Methods: Fifty-six male Wistar rats were randomly divided into seven experimental groups (n = 8) treated with normal saline/acetaminophen/acetaminophen + L-carnosine. CCI was used to induce neuropathic pain in rats. Hyperalgesia and allodynia were assessed using hotplate and von Frey tests, respectively. Investigation of spinal proinflammatory cytokines and antioxidant system were carried out after twenty-one days of treatment. Results: The results showed that the co-administration of acetaminophen and L-carnosine significantly (P < 0.001) increased the paw withdrawal threshold to thermal and mechanical stimuli in ligated rats compared to the ligated naïve group. There was a significant (P < 0.001) decrease in the levels of nuclear factor kappa light chain enhancer B cell inhibitor, calcium ion, interleukin-1-beta, and tumour necrotic factor-alpha in the spinal cord of the group coadministered with acetaminophen and L-carnosine compared to the ligated control group. Co-administration with acetaminophen and L-carnosine increased the antioxidant enzymatic activities and reduced the lipid peroxidation in the spinal cord. Conclusions: Co-administration of acetaminophen and L-carnosine has anti-inflammatory effects as a mechanism that mediate its antinociceptive effects in CCI-induced peripheral neuropathy in Wistar rat.

Study on the Treatment Mechanism of Back-Shu Points for Organ Dysfunction (배수혈의 내장기 치료 기전에 관한 연구)

  • Hwang, Man-Suk
    • Korean Journal of Acupuncture
    • /
    • v.33 no.3
    • /
    • pp.95-101
    • /
    • 2016
  • Objectives : This study aims to overview the therapeutic mechanism of back-shu points in terms of sympathetic visceral motor nervous system. Methods : Studies about autonomic nervous system, and studies and ancient texts about back-shu points were reviewed. We interpreted possible mechanism of back-shu points considering similarities of anatomical and physiological characteristics of back-shu points and visceral motor nervous system. Results : Afferent signals for organ lesions that can develop the symptoms of autonomic neurological symptoms, pain, hyperalgesia through the skin segment. Through a physical examination of the myotome and dermatome, it is possible to diagnose segmental disorders. Treatment stimulation of the thick fibers of the disorder segment skin can reduce abnormal autonomic influence over the sympathetic reflex mechanism. In addition, if spinal muscles are relaxed, the pressure on the nerve roots could be reduced and consequently the hyperactivity of the sympathetic visceral motor signal would be suppressed. Conclusions : The back-shu points treatments work through the mechanism of the sympathetic nervous reflex. Moreover, segmental acupuncture can reduce tension of the spinal muscles, thereby improving pathological conditions of the sympathetic nervous system.

Detection of Substance P, Calcitonin Gene-Related Peptide and Prostaglandin E2 in Human Epidural Space (인체의 경막외강에서 Substance P와 Calcitonin Gene-Related Peptide 및 Prostaglandin E2의 검출)

  • Paek, Sung Hee;Kim, Hae Taek;Kim, Bong Il
    • The Korean Journal of Pain
    • /
    • v.19 no.2
    • /
    • pp.168-174
    • /
    • 2006
  • Background: Several biochemical mediators, such as substance P, calcitonin gene-related peptide (CGRP) and prostaglandin $E_2$, have been demonstrated to be involved in herniated or degenerated disc-induced radiculopathy. The authors tested the hypothesis that these mediators would existed in the epidural space of humans. Methods: Thirty nine patients were divided into two groups; 27 patients, who were diagnosed with spinal stenosis (stenosis group), and 12 scheduled for epidural anesthesia, without a history of back pain (control group). Under fluoroscopic guidance, an epidural catheter was introduced through the caudal space and placed into the anterior and posterior spaces, up to and around the epidural adhesive area, in the stenosis group. In the control group, the catheter was placed into the posterior epidural space through the L3⁣-4 or L4⁣-5 intervertebral space. Epidural irrigation was performed with 10 ml of saline, via an epidural catheter. Aspirated lavage fluid was collected, and the concentrations of biochemical mediators (substance P, CGRP and prostaglandin $E_2$) measured using an enzyme immunoassay kit. Results: Substance P, CGRP and prostaglandin $E_2$ were detected in all the epidural lavage fluids from both groups. The concentrations of substance P and prostaglandin $E_2$ in the stenosis group were higher than those of the control (P < 0.05). However, there was no difference in the CGRP levels between the two groups. In the stenosis group, the concentrations of these three mediators in the anterior epidural space were no different to those in the posterior space. Conclusions: These results suggest that biochemical mediators, such as substance P and prostaglandin $E_2$, in the epidural space might be partly involved in pain mechanism associated with spinal stenosis.