• Title/Summary/Keyword: Pagerank Algorithm

Search Result 4, Processing Time 0.017 seconds

The Study on the Ranking Algorithm of Web-based Sear ching Using Hyperlink Structure (하이퍼링크 구조를 이용한 웹 검색의 순위 알고리즘에 관한 연구)

  • Kim, Sung-Hee;O, Gun-Teak
    • Journal of Information Management
    • /
    • v.37 no.2
    • /
    • pp.33-50
    • /
    • 2006
  • In this paper, after reviewing hyperlink based ranking methods, we saw various other parameters that effect ranking. Then, We analyzed the PageRank and HITS(Hypertext Induced Topic Search) algorithm, which are two popular methods that use eigenvector computations to rank results in terms of their characteristics. Finally, google and Ask.com search engines were examined as examples for applying those methods. The results showed that use of Hyperlink structure can be useful for efficiency of web site search.

Comparison between Social Network Based Rank Discrimination Techniques of Data Envelopment Analysis: Beyond the Limitations (사회 연결망 분석 기반 자료포락분석 순위 결정 기법간 비교와 한계 극복 방안에 대한 연구)

  • Hee Jay Kang
    • Journal of Information Technology Services
    • /
    • v.22 no.1
    • /
    • pp.57-74
    • /
    • 2023
  • It has been pointed out as a limitation that the rank of some efficient DMUs(decision making units) cannot be discriminated due to the relativity nature of efficiency measured by DEA(data envelopment analysis), comparing the production structure. Recently, to solve this problem, a DEA-SNA(social network analysis) model that combines SNA techniques with data envelopment analysis has been studied intensively. Several models have been proposed using techniques such as eigenvector centrality, pagerank centrality, and hypertext induced topic selection(HITS) algorithm, but DMUs that cannot be ranked still remain. Moreover, in the process of extracting latent information within the DMU group to build effective network, a problem that violates the basic assumptions of the DEA also arises. This study is meaningful in finding the cause of the limitations by comparing and analyzing the characteristics of the DEA-SNA model proposed so far, and based on this, suggesting the direction and possibility to develop more advanced model. Through the results of this study, it will be enable to further expand the field of research related to DEA.

User Reputation Evaluation Using Co-occurrence Feature and Collective Intelligence (동시출현 자질과 집단 지성을 이용한 지식검색 문서 사용자 명성 평가)

  • Lee, Hyun-Woo;Han, Yo-Sub;Kim, Lae-Hyun;Cha, Jeong-Won
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.4
    • /
    • pp.459-476
    • /
    • 2008
  • The user needs to find the answer to your question is growing fast at the service using collective intelligent knowledge. In the previous researches, it was proven that the non-text information like view counting, referrer number, and number of answer is good in evaluating answers. There were also many works about evaluating answers using the various kinds of word dictionaries. In this work, we propose new method to evaluate answers to question effectively using user reputation that estimated by the social activity. We use a modified PageRank algorithm for estimating user reputation. We also use the similarity between question and answer. From the result of experiment in the Naver GisikiN corpus, we can see that the proposed method gives meaningful performance to complement the answer selection rate.

  • PDF

RDP-based Lateral Movement Detection using PageRank and Interpretable System using SHAP (PageRank 특징을 활용한 RDP기반 내부전파경로 탐지 및 SHAP를 이용한 설명가능한 시스템)

  • Yun, Jiyoung;Kim, Dong-Wook;Shin, Gun-Yoon;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • As the Internet developed, various and complex cyber attacks began to emerge. Various detection systems were used outside the network to defend against attacks, but systems and studies to detect attackers inside were remarkably rare, causing great problems because they could not detect attackers inside. To solve this problem, studies on the lateral movement detection system that tracks and detects the attacker's movements have begun to emerge. Especially, the method of using the Remote Desktop Protocol (RDP) is simple but shows very good results. Nevertheless, previous studies did not consider the effects and relationships of each logon host itself, and the features presented also provided very low results in some models. There was also a problem that the model could not explain why it predicts that way, which resulted in reliability and robustness problems of the model. To address this problem, this study proposes an interpretable RDP-based lateral movement detection system using page rank algorithm and SHAP(Shapley Additive Explanations). Using page rank algorithms and various statistical techniques, we create features that can be used in various models and we provide explanations for model prediction using SHAP. In this study, we generated features that show higher performance in most models than previous studies and explained them using SHAP.