• Title/Summary/Keyword: Paecilomyces Bainier

Search Result 2, Processing Time 0.015 seconds

Purification and Properties of a Novel ${\beta}$-Glucosidase, Hydrolyzing Ginsenoside Rb1 to CK, from Paecilomyces Bainier

  • Yan, Qin;Zhou, Xin-Wen;Zhou, Wei;Li, Xing-Wei;Feng, Mei-Qing;Zhou, Pei
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1081-1089
    • /
    • 2008
  • A novel ginsenoside-hydrolyzing ${\beta}$-glucosidase was purified from Paecilomyces Bainier sp. 229 by a combination of Q-Sepharose FF, phenyl-Sepharose CL-4B, and CHT ceramic hydroxyapatite column chromatography. The purified enzyme was a monomeric protein with a molecular mass estimated to be 115 kDa. The optimal enzyme activity was observed at pH 3.5 and $60^{\circ}C$. It was highly stable within pH 3-9 and at temperatures lower than $55^{\circ}C$. The enzyme was specific to ${\beta}$-glucoside. The order of enzyme activities against different types of ${\beta}$-glucosidic linkages was ${\beta}$-(1-6)>${\beta}$-(1-2)>${\beta}$-(1-4). The enzyme converted ginsenoside Rb1 to CK specifically and efficiently. An 84.3% amount of ginsenoside Rb1, with an initial concentration of 2 mM, was converted into CK in 24 h by the enzyme at $45^{\circ}C$ and pH 3.5. The hydrolysis pathway of ginsenoside Rb1 by the enzyme was $Rb1{\to}Rd{\to}F2{\to}CK$. Five tryptic peptide fragments of the enzyme were identified by a newly developed de novo sequencing method of post-source decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. By comparing the five identified peptide sequences with the NCBI database, this purified ${\beta}$-glucosidase proves to be a new protein that has not been reported before.

New metabolites from the biotransformation of ginsenoside Rb1 by Paecilomyces bainier sp.229 and activities in inducing osteogenic differentiation by Wnt/β-catenin signaling activation

  • Zhou, Wei;Huang, Hai;Zhu, Haiyan;Zhou, Pei;Shi, Xunlong
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.199-207
    • /
    • 2018
  • Background: Ginseng is a well-known traditional Chinese medicine that has been widely used in a range of therapeutic and healthcare applications in East Asian countries. Microbial transformation is regarded as an effective and useful technology in modification of nature products for finding new chemical derivatives with potent bioactivities. In this study, three minor derivatives of ginsenoside compound K were isolated and the inducing effects in the Wingless-type MMTV integration site (Wnt) signaling pathway were also investigated. Methods: New compounds were purified from scale-up fermentation of ginsenoside Rb1 by Paecilomyces bainier sp. 229 through repeated silica gel column chromatography and high pressure liquid chromatography. Their structures were determined based on spectral data and X-ray diffraction. The inductive activities of these compounds on the Wnt signaling pathway were conducted on MC3T3-E1 cells by quantitative real-time polymerase chain reaction analysis. Results: The structures of a known 3-keto derivative and two new dehydrogenated metabolites were elucidated. The crystal structure of the 3-keto derivative was reported for the first time and its conformation was compared with that of ginsenoside compound K. The inductive effects of these compounds on osteogenic differentiation by activating the Wnt/b-catenin signaling pathway were explained for the first time. Conclusion: This study may provide a new insight into the metabolic pathway of ginsenoside by microbial transformation. In addition, the results might provide a reasonable explanation for the activity of ginseng in treating osteoporosis and supply good monomer ginsenoside resources for nutraceutical or pharmaceutical development.