• Title/Summary/Keyword: Paddy water demand

Search Result 71, Processing Time 0.03 seconds

Applicability of the DAWAST Model Considered Return flows (용수 수요를 고려한 DAWAST 모형의 적용성 평가)

  • Noh, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1097-1107
    • /
    • 2003
  • The DAWAST model was originally developed to consider the variation of water storage in the unsaturated soil zone and it is a conceptual lumped model. Return flows from agricultural, domestic and industrial water were included to the original result of model simulation to calibrate model parameters of watershed runoff. Agricultural water demand was estimated only in paddy fields supposing that return flow responded at stream was originated from paddy fields. Domestic and industrial water demand was estimated by average daily water demand multiplied monthly variation coefficient. Daily inflow to the Daechung multipurpose dam was applied to verify the DAWAST model considered return flows. On annual average from 1983 to 2001, inflows were simulated to 652.5 mm with return flows considered, which was approached more closer to observed inflow of 667.3 mm, compared with case of 606.8 mm with return flows not considered.

A Study on the Regional Property for the Agricultural Water Demand (농업용수 수요량의 지역적 특성 조사 연구(관개배수 \circled1))

  • 김선주;이광야;여운식;박재흥
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.120-125
    • /
    • 2000
  • This study analyzes agricultural water demand nationwide which calculated by the estimation system for agricultural water demand(ESAD) with the data are observed in the other Studies. The results are as follows. Maximum, minimum and average values of annual evapotranspiration in paddy in 1,767 boundaries covering all the country are estimated as 819.2mm, 595.2mm and 702.9mm respectively. In the case of transplant seeding, the annual effective rainfall is estimated as 834.7mm to 464.3mm, while the average is 635.3mm. The amount of effective rainfall is largest in case of transplant seedlings and then come watered direct seeding and dry direct seeding regardless of region. Maximum, minimum and average values of annual evapotranspiration in upland in 1,767 boundaries are estimated as 659.97mm, 129.3mm and 411.8mm respectively. The annual effective rainfall is estimated as 607.2mm to 68.3mm while the average is 257.4mm. infiltration ratio in paddy in 1,767 boundaries applied in ESAD is 5.06mm/day in average, varying from 12.0mm/day to 2.0mm/day. Applied conveyance loss is 12.8% in average, varying from 18.0% to 8.0%.

  • PDF

Reevaluation of Design Frequency of Drought and Water Supply Safety for Agricultural Reservoirs under Changing Climate and Farming Methods in Paddy Field (기상 및 영농방식 변화에 따른 농업용 저수지의 설계한발빈도 및 이수안전도 재평가)

  • Nam, Won-Ho;Kwon, Hyung Joong;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.121-131
    • /
    • 2018
  • Past climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply and demand. Changes on rainfall and hydrologic patterns can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the changing climate and farming methods in paddy field. The purpose of this study is an evaluation method of design frequency of drought and water supply safety for agricultural reservoirs to investigate evidence of climate change occurrences at a local scale. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under changing climate and farming methods in paddy field.

Climate-instigated disparities in supply and demand constituents of agricultural reservoirs for paddy-growing regions

  • Ahmad, Mirza Junaid;Cho, Gun-ho;Choi, Kyung-sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.516-516
    • /
    • 2022
  • Agricultural reservoirs are critical water resources structures to ensure continuous water supplies for rice cultivation in Korea. Climate change has increased the risk of reservoir failure by exacerbating discrepancies in upstream runoff generation, downstream irrigation water demands, and evaporation losses. In this study, the variations in water balance components of 400 major reservoirs during 1973-2017 were examined to identify the reservoirs with reliable storage capacities and resilience. A conceptual lumped hydrological model was used to transform the incident rainfall into the inflows entering the reservoirs and the paddy water balance model was used to estimate the irrigation water demand. Historical climate data analysis showed a sharp warming gradient during the last 45 years that was particularly evident in the central and southern regions of the country, which were also the main agricultural areas with high reservoir density. We noted a country-wide progressive increase in average annual cumulative rainfall, but the forcing mechanism of the rainfall increment and its spatial-temporal trends were not fully understood. Climate warming resulted in a significant increase in irrigation water demand, while heavy rains increased runoff generation in the reservoir watersheds. Most reservoirs had reliable storage capacities to meet the demands of a 10-year return frequency drought but the resilience of reservoirs gradually declined over time. This suggests that the recovery time of reservoirs from the failure state had increased which also signifies that the duration of the dry season has been prolonged while the wet season has become shorter and/or more intense. The watershed-irrigated area ratio (W-Iratio) was critical and the results showed that a slight disruption in reservoir water balance under the influence of future climate change would seriously compromise the performance of reservoirs with W-Iratio< 5.

  • PDF

Prediction of Land-cover Changes and Analysis of Paddy Fields Changes Based on Climate Change Scenario (A1B) in Agricultural Reservoir Watersheds (기후변화 시나리오 (A1B)에 따른 농업용 저수지 유역의 미래 토지피복변화 예측 및 논 면적 변화 특성 분석)

  • Oh, Yun-Gyeong;Yoo, Seung-Hwan;Lee, Sang-Hyun;Park, Na-Young;Choi, Jin-Yong;Yun, Dong-Koun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.77-86
    • /
    • 2012
  • This study was aim to predict future land-cover changes and to analyze regional land-cover changes in irrigation areas and agricultural reservoir watersheds under climate change scenario. To simulate the future land-cover under climate change scenario - A1B of the SRES (Special Report on Emissions Scenarios), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation to socioeconomic and biophysical driving factors. For the study areas, 8 agricultural reservoirs were selected from 8 different provinces covering all around nation. The simulation results from 2010 to 2100 suggested future land-cover changes under the scenario conditions. For Madun reservoir in Gyeonggi-do, total decrease amount of paddy area was a similar amount of 'Base demand scenario' of Water Vision 2020 published by MLTMA (Ministry of Land, Transport and Maritime Affairs), while the decrease amounts of paddy areas in other sites were less than the amount of 'High demand scenario' of Water Vision 2020. Under A1B scenario, all the land-cover results showed only slight changes in irrigation areas of agricultural reservoirs and most of agricultural reservoir watersheds will be increased continuously for forest areas. This approach could be useful for evaluating and simulating agricultural water demand in relation to land-use changes.

Runoff of Pollutants in a Reclaimed Paddy Field (간척농지에서의 오염물질 유출특성(지역환경 \circled3))

  • 최인욱;박병흔;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.637-642
    • /
    • 2000
  • In order to control the water quality of freshwater lake in tidal reclaimed land, it is needed to evaluate accurate amount of pollutant loadings from reclaimed paddy field. This study was carried out to investigate the pollutant loading from a reclaimed paddy field. Site of the study was a paddy field located in Taeho reclaimed land, with an areas of 38.5 hectares. The runoff loadings of Total-Nitrogen, Total-Phosphorus, and Chemical Oxygen Demand were 49.5 kg/㏊/yr, 3.2 kg/㏊/yr and 154.0 kg/㏊/yr, respectively. The runoff loadings in Total-Nitrogen and Total-Phosphorus from this study were much higher values than the pollutant load factor of Total-Nitrogen and Total-Phosphorus from the paddy field published by the Ministry of Environment.

  • PDF

Characteristics of Pollutants Concentrations at Paddy Field Areas during Irrigation Periods (관개기 광역논에서의 오염물질의 농도 특성)

  • 김진수;오승영;김규성;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.163-173
    • /
    • 2001
  • This study describes the characteristics of concentrations of pollutants such as total nitrogen(T-N), total phosphorous(T-P), and chemical oxygen demand(COD) at paddy areas during 2-year irrigation periods. The most common order in average concentrations of T-P and COD is podded water > irrigation(or drainage) water > percolated water. Most of pollutants concentrations in drainage water are lower than those in irrigation water after early July due to large uptake of pollutants by rice crop and denitrification. The exponential L (load)-Q(discharge) equations for classified irrigation periods are significant at 0.001 level for irrigation and drainage waters. For drainage water, the concentrations of T-N and COD slightly decrease with discharge, while the T-P concentrations slightly increase with discharge.

  • PDF

Investigation of Irrigation Water Use in Sumjin River Basin

  • Choi, Jin-Kyu;Yoon, Kwang-Sik;Choi, Soo-Myung;Park, Seung-Woo;Son, Jae-Gwon;Koo, Ja-Woong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.1-8
    • /
    • 2000
  • To examine the irrigation water uses in Sunjin river basin, existing status and operation records of headworks facilities including reservoirs, pumping stations, tube wells, and diversion dams were surveyed and analyzed for the period of 1994∼1998. Daily irrigation demand and water use were estimated for the irrigated paddy field using penman equation, Thank model, reservoir water balance model and daily pumping rate of pumping stations. Irrigation water use from multi-purpose dams in the basin was not included in this study.

  • PDF

Probability Distribution of BOD EMC from Paddy Fields (논 유출수 BOD의 유량가중평균농도(EMC) 확률분포)

  • Jin, So-Hyun;Jung, Jae-Woon;Yoon, Kwang-Sik;Choi, Woo-Jung;Choi, Dong-Ho;Kim, Sang-Don;Kang, Jae-Hong;Choi, Yu-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1153-1159
    • /
    • 2010
  • Identification of probability distribution for water quality constituents from specific land use is important to achieve successful implementation of TMDL program. In this 3-year study, distribution of discharge and BOD(Biological Oxygen Demand) concentration from paddy rice fields were monitored. Four probability distributions, normal, log-normal, Gamma and Weibull were fitted and the goodness-of-fit was assessed using probability plots and Kolmogorov-Smirnov test. $EMC_s$ of BOD in runoff from paddy field ranged 0.37 to $7.99\;mgL^{-1}$, and all four probability distributions were acceptable. But the normal distribution would be preferred for BOD from paddy fields considering nature of straight forward application.

Characteristics of Biochemical Oxygen Demand Export from Paddy Fields during Storm and Non-storm Period and Evaluation of Unit Load (강우시와 비강우시 BOD 유출 특성 조사 및 원단위 평가)

  • Choi, Dongho;Cho, Sohyun;Hwang, Taehee;Kim, Youngsuk;Jung, Jaewoon;Choi, Woojung;Park, Hyunkyu;Yoon, Kwangsik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.531-537
    • /
    • 2017
  • The biologic Oxygen Demand (BOD) is a reliable and generally accepted indicator of water pollution by organic pollutants. Accordingly, estimation of BOD export from paddies carries important implications fwith regard to water management in rural areas. In this study, hydrology and BOD concentration were monitored during the period 2008 through 2012, in an effort to understand the characteristics of BOD export from paddy fields. The findings demonstrated that BOD load by rainfall above 50 mm. occupied about 50 % of total load, whereas the load by less than ten mm. rainfall occupied about 29 % of the total load during periods of stormy activity. It therefore seems that it could be possible to reduce the BOD load up to 29 % during storm periods, when drainage control conducted for rainfall less than ten mm.(an amount which is relatively easy to manage). The documented mean loads of storm and non-storm were $17.1kg\;ha^{-1}\;yr^{-1}$ and $11.2kg\;ha^{-1}\;yr^{-1}$, respectively. The BOD load during the significant rainfall period was similar to the renewed unit load by NIER (2014). However, there were substantial differences between unit load and actual load when the non-storm load was incorporated into the BOD load estimation from paddy fields. In view of the foregoing, it is felt that, the non-storm load needs to be further considered and managed for the successful implementation of Total Maximum Daily Load (TMDL) program.