• Title/Summary/Keyword: Paddy water demand

Search Result 71, Processing Time 0.03 seconds

Estimation of Paddy Water Demand Using Land Cover Map in North Korea (토지피복도를 이용한 북한 지역의 논용수 수요량 추정)

  • Yu, Seung-Hwan;Yun, Seong-Han;Hong, Seok-Yeong;Choe, Jin-Yong
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.236-244
    • /
    • 2007
  • Agricultural water demand in North Korea must be considered for the near-future investment in agricultural consolidation projects and to prepare for the future unification. Thus, the objective of this study is to estimate the agricultural water demand of paddy fieldss in North Korea. GIS data including land cover classification map, Thiessen network and administration maps of North Korea, and meteorological data were synthesized. In order to estimate paddy water demand for a 10-year return period, the FAO Blaney-Criddle method and the fixed effective rainfall ratio method were used. The results showed that 4.77 billion $\beta$(c)/year paddy water demand is required for the 512,400 ha of paddy fieldss. Paddy water demand in the three major regions - Hwanghaedo, Pyeongando, Hamgyeongnamdo - was estimated chargong 81.7 percent of total paddy water demand in North Korea.

  • PDF

The Impacts of Climate Change on Paddy Water Demand and Unit Duty of Water using High-Resolution Climate Scenarios (고해상도 기후시나리오를 이용한 논용수 수요량 및 단위용수량의 기후변화 영향 분석)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Lee, Sang-Hyun;Oh, Yun-Gyeong;Park, Na-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.15-26
    • /
    • 2012
  • For stable and sustainable crop production, understanding the effects of climate changes on agricultural water resources is necessary to minimize the negative effects which might occur due to shifting weather conditions. Although various studies have been carried out in Korea concerning changes in evapotranspiration and irrigation water requirement, the findings are still difficult to utilize fordesigning the demand and unit duty of water, which are the design criteria of irrigation systems. In this study, the impact analysis of climate changes on the paddy water demand and unit duty of water was analyzed based on the high resolution climate change scenarios (specifically under the A1B scenario) provided by the Korea Meteorological Administration. The result of the study indicated that average changes in the paddy water demand in eight irrigation districts were estimated as -2.4 % (2025s), -0.2 % (2055s), and 3.2 % (2085s). The unit duty of water was estimated to increase on an average within 2 % during paddy transplanting season and within 5 % during growing season after transplanting. This result could be utilized for irrigation system design, agricultural water resource development, and rice paddy cultivation policy-making in South Korea.

Assessing Future Water Demand for Irrigating Paddy Rice under Shared Socioeconomic Pathways (SSPs) Scenario Using the APEX-Paddy Model (APEX-paddy 모델을 활용한 SSPs 시나리오에 따른 논 필요수량 변동 평가)

  • Choi, Soon-Kun;Cho, Jaepil;Jeong, Jaehak;Kim, Min-Kyeong;Yeob, So-Jin;Jo, Sera;Owusu Danquah, Eric;Bang, Jeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.1-16
    • /
    • 2021
  • Global warming due to climate change is expected to significantly affect the hydrological cycle of agriculture. Therefore, in order to predict the magnitude of climate impact on agricultural water resources in the future, it is necessary to estimate the water demand for irrigation as the climate change. This study aimed at evaluating the future changes in water demand for irrigation under two Shared Socioeconomic Pathways (SSPs) (SSP2-4.5 and SSP5-8.5) scenarios for paddy rice in Gimje, South Korea. The APEX-Paddy model developed for the simulation of paddy environment was used. The model was calibrated and validated using the H2O flux observation data by the eddy covariance system installed at the field. Sixteen General Circulation Models (GCMs) collected from the Climate Model Intercomparison Project phase 6 (CMIP6) and downscaled using Simple Quantile Mapping (SQM) were used. The future climate data obtained were subjected to APEX-Paddy model simulation to evaluate the future water demand for irrigation at the paddy field. Changes in water demand for irrigation were evaluated for Near-future-NF (2011-2040), Mid-future-MF (2041-2070), and Far-future-FF (2071-2100) by comparing with historical data (1981-2010). The result revealed that, water demand for irrigation would increase by 2.3%, 4.8%, and 7.5% for NF, MF and FF respectively under SSP2-4.5 as compared to the historical demand. Under SSP5-8.5, the water demand for irrigation will worsen by 1.6%, 5.7%, 9.7%, for NF, MF and FF respectively. The increasing water demand for irrigating paddy field into the future is due to increasing evapotranspiration resulting from rising daily mean temperatures and solar radiation under the changing climate.

Analysis of Variance of Paddy Water Demand Depending on Rice Transplanting Period and Ponding Depth (이앙시기 및 담수심 변화에 따른 논벼 수요량 변화 분석)

  • Cho, Gun-Ho;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.75-85
    • /
    • 2021
  • This study evaluated variations in the paddy rice water demand based on the continuous changing in rice transplanting period and ponding depth at the four study paddy fields, which represent typical rice producing regions in Korea. Total 7 scenarios on rice transplanting periods were applied while minimum ponding depth of 0 and 20 mm were applied in accordance with maximum ponding depth ranging from 40 mm to 100 mm with 20 mm interval. The weather data from 2013 to 2019 was also considered. The results indicated that the highest rice water demand occurred at high temperature and low rainfall region. Increased rice transplanting periods showed higher rice water demand. The rice water demand for 51 transplanting days closely matched with the actual irrigation water supply. In case of ponding depth, the results showed that the minimum ponding depth had a proportional relationship with rice water demand, while maximum ponding depth showed the contrary results. Minimum ponding depth had a greater impact on rice water demand than the maximum ponding depth. Therefore, these results suggest that increasing the rice transplanting period, which reflects the current practice is desirable for a reliable estimation of rice water demand.

Development of the Estimation System for Agricultural Water Demand (농업용수 수요량 산정 시스템 개발)

  • 이광야;김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • To estimate agricultural water demand, many factors such as weather, crops, soil, cultivation method, crop coefficient and cultivation area, etc. must be considered. But it is not easy to estimate water demand in consideration of these factors, which are variable according to growth stage and regional environment. This study provides estimation system for agricultural water demand(ESAD) in order to estimate water demand easily and accurately, and arranges all factors needed for water demand estimation. This study identifies the application of estimation system for agricultural water demand with the data observed in the other studies, and analyzes nationwide agricultural water demand. The results are as follows. 1) The practice of different rice cultivation in the paddy field resulted in different water demands. Water depth and infiltration ratio in paddy are the most important factors to estimate water demand. The water depths in paddy simulated by ESAD is very similar to the observed ones. 2) Water demand of upland crops varies with the crops, soil, etc.. Effective rainfall estimated by daily routing of soil moisture varies according to the crops, soil, and effective soil zone(root depth). As crop root become grown, effective rainfall and an amount of irrigation water has been increased. 3) The current unit water demand of upland crops applied as 500mm or 550mm to estimate water demand does not reflect the differences caused by the crops, regional surrounding, weather condition, etc. Results from ESAD for the estimation of water demand of upland crops show that ESAD can simulate the actual field conditions reasonably because it simulates the actual irrigation practices with the daily routing of soil moisture.

  • PDF

A Calculation of Agricultural Water Demand According to the Farmland Developing Plan on the Saemangeum Tidal Land Reclamation Project (새만금 간척지구의 농업용지 토지이용계획을 고려한 농업용수 수요량 산정)

  • Jang, JeongRyeol;Lee, SungHack;Cho, Youngkweon;Choi, JinYong
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2014
  • The purpose of this study is to calculate agricultural water demand as considering landuse plan of the farm land on the Saemangeum tidal land reclamation project. This study based on the farm landuse plan(2012) and considered some items which did not included previous work like prevention water for resalinization for paddy and upland and muli-purpose water for upland. This study showed that the agricultural water demand estimated $145.123Mm^3/yr$, which is needed as much $14.792Mm^3/yr$ as more water than previous work. The difference comes from the change of unit water demand. Water demand is possible to be changed if guidelines are improved and detailed design work is completed through further study. Especially, the more studies for prevention water for resalinization in a tidal reclaimed farmland and water demand for a horticulture are needed.

  • PDF

Improvement of agricultural water demand estimation focusing on paddy water demand (논용수 수요량 산정을 중심으로 한 농업용수 수요량 산정방법의 개선)

  • Park, Chang Kun;Hwang, Junshik;Seo, Yongwon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.939-949
    • /
    • 2020
  • Currently, the demand for farmland is steadily decreasing due to changes in the agricultural environment and dietary life. In line with this, the government adopted an integrated water management with the enactment of the Framework Act on Water Management on June 2019. Therefore, it is required to take a closer look at agricultural water demand that accounts for 61% of water use for efficient water resources management. In this study, the overal process was evaluated for estimating agricultural water demand. More specifically, agricultural water demand for paddy field, which comprises 67% to 87% of agricultural water demand, was reviewed in detail. The biggest issue in estimating the paddy field water demand is the selection of the method for potential evapotranspiration. FAO recommends Penman-Monteith, but, currently, our criteria suggest a modified Penman equation that shows over estimation. Also, the crop coefficient, which is the main factor in evaluating evapotranspiration, has an issue that does not consider the current climate and crop varieties because it was developed 23 years ago. Comparing the Modified Penman and Penman-Monteith equations using the data from Jeonju National Weather Service, the modified Penman equation showed a big difference compared to the Penman-Monteith equation. When the crop coefficient was applied, the difference between late May and late August increased, where the amount of evapotranspiration was high. The estimation process was applied to four study reservoirs in Gimje. Comparing the estimated water demand with the supplied water record from reservoirs, the results showed that the estimation accuracy depends on not just the potential evapotranspiration, but also the standard water storing level in paddy fields.

Assessment of paddy rice evapotranspiration estimation methods based on comparisons of agricultural water supply (농업용수 공급량과의 비교를 통한 논벼 증발산량 산정 방법 평가)

  • Kim, Sanghyun;Cho, Gunho;Choi, Kyungsook
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1131-1142
    • /
    • 2020
  • This study assessed evapotranspiration (ET) methods applying for estimation of paddy rice water demand based on agricultural water supply. The Modified Penman (MP) method and the Penman-Monteith (PM) method recently suggested by Rural Development Administration (RDA) were considered. The 6 Korea Rural Community Corporation (KRC) command areas located in Honam province were selected in this study. The climate characteristics were also analysed with the average annual and the growing season temperatures and rainfalls. As a result, the annual average and the growing season temperature showed the increased trend while the rainfall tended to decrease during 30 years. The paddy rice water demand found to be directly influenced by these climate trends as ET also affected by them. The higher values of paddy rice water demand were obtained from applying MP method compared to the one applying PM method. The lower differences were also obtained from MP method for the comparisons between the paddy rice water demand estimated by both methods with agricultural water supply. Therefore, these results suggest that the MP method is more desirable to use for estimating paddy rice water demand in order to achieve stability of irrigation designs and plans.

Estimation of Agricultural Water Demand in Hwanghae South Province, North Korea (북한 황해남도지역 농업용수 수요량의 추정(관개배수 \circled2))

  • 장민원;정하우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.175-180
    • /
    • 2000
  • The purposes of this study were to determine an algorithm for estimating agricultural water demand of remote sites using remote sensing data and to apply it to Hwanghae South Province and estimate the present and potential water demand for agriculture use. 3 Landsat-5 TM images and DEM(100${\times}$100mm) were used for classification of the existing land cover and land suitability analysis for paddy fields. Also, 20 years meteorological data of North Korea were used for calculating the potential evapotranspiration by Blaney-Criddle eq. and net water demand. The results showed that the present and potential agricultural water demand and the developable area for paddy fields is about 89,300㏊.

  • PDF

A System for Estimating Daily Paddy Irrigation Water Requirements in Simulating Daily Streamflow

  • Noh Jae Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.71-80
    • /
    • 2004
  • A system for estimating daily paddy irrigation water requirements was developed to simulate daily stream flows that reflect various upstream and downstream return flows from river basin. Evapotranspiration in paddy fields was estimated using the modified Penman equation. Daily irrigation water requirements of paddy fields were calculated by multiplying the paddy area and the daily decrease in ponding depth. The system was constructed almost completely using images, grids, etc. in Visual Basic 6.0. The developed model was verified in the Damyang dam, and was used to estimate daily paddy irrigation water requirements at 12 small watersheds in Geum river basin for 20 years, from 1983 to 2002, covering paddy field areas of $3,332\~26,422$ ha. The results on the runoff analysis on the inflow to the Daecheong multi-purpose dam with various return flows were satisfactory. They were reasonable compared to the scenario where return flows were not considered.