• Title/Summary/Keyword: Packing phase

Search Result 96, Processing Time 0.023 seconds

A Study on the Effects of Filling and Packing Phases on the Injection Modeling (사출성형에 대한 충전과 보압과정의 영향에 관한 연구)

  • 김현필;김용조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.112-118
    • /
    • 2002
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis fur the filling and packing phases. Molding troubles like flow mark, weld line, sink mark, short shot and warpage can be caused by these injection molding process factors. Among them, the short shot was caused by that the packing pressure could not reach properly to the filling end part in the packing phase and hence the flow rate could not be supplied to the full. In addition, as the flow rate for the volumetric shrinkage during the frozen phase could not be supplied properly by the packing pressure, the short shot appeared. Here, the volumetric shrinkage reduced with increasing the packing pressure and also the warpage of molded part increased with increasing the packing pressure.

  • PDF

A Study on the Effects of Filling and Packing Phases on Injection Molding Process (충전과 보압과정이 사출성형공정에 미치는 영향에 관한 연구)

  • 김현필;김용조
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.44-53
    • /
    • 2002
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for the filling and packing phases. Molding troubles like flow mark weld line, sink ma가 short shot and warpage car be caused by these injection molding process factors. Among them the short shot was caused by the fact that the packing pressure could not reach properly to the filling end part in the packing phase and hence the flow rate could not be supplied to the full. In addition as the flow rate for the volumetric shrinkage during the f개zen phase could not be supplied Properly by the packing pressure, the short shot appeared. Here, the volumetric shrinkage reduced with increasing the packing pressure and also the warpage of molded part increased with increasing the packing Pressure.

On-Channel Micro-Solid Phase Extraction Bed Based on 1-Dodecanethiol Self-Assembly on Gold-Deposited Colloidal Silica Packing on a Capillary Electrochromatographic Microchip

  • Park, Jongman;Kim, Shinseon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • A fully packed capillary electrochromatographic (CEC) microchip with an on-column micro-solid phase extraction (SPE) bed for the preconcentration and separation of organic analytes was prepared. A linear microchannel with monodisperse colloidal silica packing was formed on a cyclic olefinic copolymer microchip with two reservoirs on both ends. Silver-cemented silica packing frit structure was formed at the entrance of the microchannel by electroless plating treatment as a base layer. A gold coating was formed on it by reducing $Au^{3+}$ to gold with hydroxylamine. Finally micro-SPE bed was formed by self-assembly adsorption of 1-dodecanethiol on it. Micro-SPE beds were about 100-150 ${\mu}m$ long. Approximately $10^3$ fold sensitivity enhancements for Sulforhodamine B, and Fluorescein in nM concentration levels were possible with 80 s preconcentration. Basic extraction characteristics were studied.

Analysis on Hot Plate Welding of Thermoplastic Elastomer Packing (열가소성 엘라스토머 패킹의 열융착 해석)

  • Kim, Min Ho;Lee, Yong Tae;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.477-482
    • /
    • 2016
  • Airtight containers have been widely used in many industries and household. They need a packing for sealing between the inside and outside. Previous packing materials have some drawbacks like stench, stickiness, and difficulty of applying to automated manufacturing systems. So, a new packing material which is harmless and suitable for automation is needed. This study performed a hot plate welding process of thermoplastic elastomer (TPE) as the packing material. The hot plate welding process included a phase change process of solidification and melting. The porosity-enthalpy method was adopted in order to simulate phase change problems. The TPE showed non-Newtonian fluid characteristics during the melting process. Since properties of SEBS are not well-defined, we established TPE properties by observing the melting behavior of TPE. In order to find an optimized condition, a parametric study including packing thickness, shapes, hot plate temperature, and thermal resistance, was conducted.

Analysis of Cavity Pressure for Packing Conditions in Injection Molding of a Deep Depth Product (깊이가 깊은 제품의 사출성형에서 보압조건에 따른 캐비티 내압의 분석)

  • Kim, Dong Woo;Kang, Mina;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.685-692
    • /
    • 2012
  • Injection molding operation consists of phases of filling, packing, and cooling. The highest cavity pressure is involved in the packing phase among the operation phases. Thus the cavity pressure largely depends upon velocity to pressure (v/p) switchover timing and magnitude of packing pressure. Developed cavity pressure is directly related to stress concentration in the cavity of mold and it may cause a crack in the mold. Consequently control of cavity pressure is considered very important. In this study, cavity pressure was analyzed in terms of v/p switchover timing and packing pressure through computer simulation and experiment. Cavity pressure was increased as the v/p switchover timing was delayed. Residual pressure after cooling phase was observed when the v/p switchover timing was late, which was due to increased pressurizing time for long filling phase. Cavity pressure was increased proportionally with the packing pressure. Residual pressure after cooling phase was also observed, and it was increased with increasing packing pressure. High cavity pressure and residual pressure have been observed at late v/p switchover and high packing pressure. Compared with simulation and experimental results, the profiles of pressures were very similar however simulation could not predict residual pressure. Packing condition was important for the control of cavity pressure and the optimum condition could be set up using CAE analysis.

An analysis of cavity pressure for various injection molding conditions (성형조건에 따른 캐비티의 내압분포 분석)

  • Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, D.W.;Kim, K.Y.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.293-296
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software, Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

A study on the measurement of cavity pressure and computer simulation (성형조건에 따른 캐비티 내압 측정 및 컴퓨터 모사)

  • Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, D.W.;Kim, K.Y.;Lyu, M.Y.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.163-166
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software,Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

Effects of Packing Pressure and Time on Injection Molding of Plastic Micro-channel Plates (플라스틱 마이크로 채널 기판 사출성형 시 보압의 영향)

  • Woo, Sang-Won;Park, Si-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.224-229
    • /
    • 2016
  • Recently, polymeric micro-fluidic biochips with numerous micro patterns on the surface were fabricated by injection molding for realizing low-cost mass production of devices. To evaluate the effects of process parameters on large-scale micro-structure replication, a $50{\times}50mm^2$ tool insert with surface structures having a patterns of trapezoidal shapes (height: $30{\mu}m$) was employed. During injection molding, PMMA was used; packing phase parameters and mold temperature were investigated. The replicated surface textures were quantitatively characterized by confocal laser microscopy with 10-nm resolution. The degree of replication at low mold temperatures was found to be higher than that at high mold temperature at the beginning of the packing stage. Thereafter, the degree of replication increased to a greater extent at higher mold temperatures; application of higher mold temperatures improved the degree of replication.

True Sedimentation and Particle Packing Rearrangement during Liquid Phase Sintering

  • Lee, Jong-K.;Xu, Lei;Lu, Shu Zu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.68-69
    • /
    • 2006
  • When an alloy such as Ni-W is liquid phase sintered, heavy solid W particles sedimentate to the bottom of the container, provided that their volume fraction is less than a critical value. The sintering process evolves typically in two stages, diffusiondriven macrosegregation sedimentation followed by true sedimentation. During macrosegregation sedimentation, the overall solid volume fraction decreases concurrently with elimination of liquid concentration gradient. However, in the second stage of true sedimentation, the average solid volume fraction in the mushy zone increases with time. It is proposed that the true sedimentation results from particle rearrangement for higher packing efficiency.

  • PDF

Influence of particle packing on fracture properties of concrete

  • He, Huan;Stroeven, Piet;Stroeven, Martijn;Sluys, Lambertus Johannes
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.677-692
    • /
    • 2011
  • Particle packing on meso-level has a significant influence on workability of fresh concrete and also on the mechanical and durability properties of the matured material. It was demonstrated earlier that shape exerts but a marginal influence on the elastic properties of concrete provided being packed to the same density, which is not necessarily the case with different types of aggregate. Hence, elastic properties of concrete can be treated as approximately structure-insensitive parameters. However, fracture behaviour can be expected structure-sensitive. This is supported by the present study based on discrete element method (DEM) simulated three-phase concrete, namely aggregate, matrix and interfacial transition zones (ITZs). Fracture properties are assessed with the aid of a finite element method (FEM) based on the damage materials model. Effects on tensile strength due to grain shape and packing density are investigated. Shape differences are shown to have only modest influence. Significant effects are exerted by packing density and physical-mechanical properties of the phases, whereby the ITZ takes up a major position.