• Title/Summary/Keyword: Packet drop detection

Search Result 23, Processing Time 0.021 seconds

A Stabilized Queue Management Algorithm for Internet Congestion Control (인터넷 혼잡제어를 위한 안정적인 큐 관리 알고리즘)

  • 구자헌;정광수
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.70-80
    • /
    • 2004
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF(Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED(Random Early Detection). But, RED configuration has been a problem since its first proposal. This problem is that proposed configuration is only good for the particular traffic conditions studied, but may have detrimental effects if used in other conditions. While active queue management in routers and gateways can potentially reduce packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are unstable for tile various traffic conditions. The inherent problem with these queue management algorithms is that they all use static parameter setting. In this paper, in order to solve this problem, a new active queue management algorithm called SQM(Stabilized Queue Management) is proposed. This paper shows that it is easy to parameterize SQM algorithm to perform well under different congestion scenarios. This algorithm can effectively reduce packet loss while maintaining high link utilizations and is good for the various traffic conditions.

Periodic Packet Discard Policy for Frame Based Scheduler (프레임 기반 스케줄러를 위한 주기적 패킷 폐기 기법)

  • Lee, Sung-Hyung;Lee, Hyun-Jin;Cha, Jae-Ryong;Kim, Jae-Hyun;Kum, Dong-Won;Baek, Hae-Hyeon;Shin, Sang-Heon;Jun, Jehyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.2
    • /
    • pp.97-104
    • /
    • 2013
  • This paper introduces waiting time based periodic packet discard policy for frame based scheduler. This policy can be used with conventional packet discard policy or buffer management schemes, such as drop-tail or random early detection. Proposed discard policy discards packets, which are stayed in the buffer longer than threshold, at every period of scheduling. This decision of discard is based on waiting time of packet. In this paper, mathematical analysis is performed with situation of network congestion. Also, the simulation is performed to evaluate the performance of proposed discard policy. In the result, proposed discard policy can limit queuing delay by threshold. Also, if the packet discard is performed before scheduling and threshold is set with smaller value than frame length, it can limit the throughput of traffic.

Development of Protective Scheme against Collaborative Black Hole Attacks in Mobile Ad hoc Networks

  • Farooq, Muhammad Umar;Wang, Xingfu;Sajjad, Moizza;Qaisar, Sara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1330-1347
    • /
    • 2018
  • Mobile Ad hoc Network (MANET) is a collection of nodes or communication devices that wish to communicate without any fixed infrastructure and predetermined organization of available links. The effort has been made by proposing a scheme to overcome the critical security issue in MANET. The insufficiency of security considerations in the design of Ad hoc On-Demand Distance Vector protocol makes it vulnerable to the threats of collaborative black hole attacks, where hacker nodes attack the data packets and drop them instead of forwarding. To secure mobile ad hoc networks from collaborative black hole attacks, we implement our scheme and considered sensor's energy as a key feature with a better packet delivery ratio, less delay time and high throughput. The proposed scheme has offered an improved solution to diminish collaborative black hole attacks with high performance and benchmark results as compared to the existing schemes EDRIAODV and DRIAODV respectively. This paper has shown that throughput and packet delivery ratio increase while the end to end delay decreases as compared to existing schemes. It also reduces the overall energy consumption and network traffic by maintaining accuracy and high detection rate which is more safe and reliable for future work.

A Two level Detection of Routing layer attacks in Hierarchical Wireless Sensor Networks using learning based energy prediction

  • Katiravan, Jeevaa;N, Duraipandian;N, Dharini
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4644-4661
    • /
    • 2015
  • Wireless sensor networks are often organized in the form of clusters leading to the new framework of WSN called cluster or hierarchical WSN where each cluster head is responsible for its own cluster and its members. These hierarchical WSN are prone to various routing layer attacks such as Black hole, Gray hole, Sybil, Wormhole, Flooding etc. These routing layer attacks try to spoof, falsify or drop the packets during the packet routing process. They may even flood the network with unwanted data packets. If one cluster head is captured and made malicious, the entire cluster member nodes beneath the cluster get affected. On the other hand if the cluster member nodes are malicious, due to the broadcast wireless communication between all the source nodes it can disrupt the entire cluster functions. Thereby a scheme which can detect both the malicious cluster member and cluster head is the current need. Abnormal energy consumption of nodes is used to identify the malicious activity. To serve this purpose a learning based energy prediction algorithm is proposed. Thus a two level energy prediction based intrusion detection scheme to detect the malicious cluster head and cluster member is proposed and simulations were carried out using NS2-Mannasim framework. Simulation results achieved good detection ratio and less false positive.

Application of a PID Feedback Control Algorithm for Adaptive Queue Management to Support TCP Congestion Control

  • Ryu, Seungwan;Rump, Christopher M.
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.133-146
    • /
    • 2004
  • Recently, many active queue management (AQM) algorithms have been proposed to address the performance degradation. of end-to-end congestion control under tail-drop (TD) queue management at Internet routers. However, these AQM algorithms show performance improvement only for limited network environments, and are insensitive to dynamically changing network situations. In this paper, we propose an adaptive queue management algorithm, called PID-controller, that uses proportional-integral-derivative (PID) feedback control to remedy these weak-Dalles of existing AQM proposals. The PID-controller is able to detect and control congestion adaptively and proactively to dynamically changing network environments using incipient as well as current congestion indications. A simulation study over a wide range of IP traffic conditions shows that PID-controller outperforms other AQM algorithms such as Random Early Detection (RED) [3] and Proportional-Integral (PI) controller [9] in terms of queue length dynamics, packet loss rates, and link utilization.

Artificial neural network for safety information dissemination in vehicle-to-internet networks

  • Ramesh B. Koti;Mahabaleshwar S. Kakkasageri;Rajani S. Pujar
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1065-1078
    • /
    • 2023
  • In vehicular networks, diverse safety information can be shared among vehicles through internet connections. In vehicle-to-internet communications, vehicles on the road are wirelessly connected to different cloud networks, thereby accelerating safety information exchange. Onboard sensors acquire traffic-related information, and reliable intermediate nodes and network services, such as navigational facilities, allow to transmit safety information to distant target vehicles and stations. Using vehicle-to-network communications, we minimize delays and achieve high accuracy through consistent connectivity links. Our proposed approach uses intermediate nodes with two-hop separation to forward information. Target vehicle detection and routing of safety information are performed using machine learning algorithms. Compared with existing vehicle-to-internet solutions, our approach provides substantial improvements by reducing latency, packet drop, and overhead.

Improving TCP Performance by Implicit Priority Packet Forwarding in Mobile IP based Networks with Packet Buffering (모바일 IP 패킷 버퍼링 방식에서 TCP 성능향상을 위한 암시적인 패킷 포워딩 우선권 보장 방안)

  • 허경;이승법;노재성;조성준;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.500-511
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and the wireless link utilization performance degrades due to increased congestion by those forwarded packets. In this paper, considering the case that a mobile user moves to a congested base station in a new foreign subnetwork, we propose an Implicit Priority Packet Forwarding to improve TCP performance in mobile networks. In the proposed scheme, the old base station marks a buffered packet as a priority packet during handoff. In addition, RED (Random Early Detection) at the new congested base station does not include priority packets in queue size and does not drop those packets randomly based on average queue size. Simulation results show that wireless link utilization performance of mobile hosts can be improved without modification to Mobile IP protocol by applying proposed Implicit Priority Packet Forwarding.

A Self-Adaptive Agorithm for Optimizing Random Early Detection(RED) Dynamics (라우터 버퍼 관리 기반 체증 제어 방식의 최적화를 위한 자체 적응 알고리즘)

  • Hong, Seok-Won;Yu, Yeong-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3097-3107
    • /
    • 1999
  • Recently many studies have been done on the Random Early Detection(RED) algorithm as an active queue management and congestion avoidance scheme in the Internet. In this paper we first overview the characteristics of RED and the modified RED algorithms in order to understand the current status of these studies. Then we analyze the RED dynamics by investigating how RED parameters affect router queue behavior. We show the cases when RED fails since it cannot react to queue state changes aggressively due to the deterministic use of its parameters. Based on the RED parameter analysis, we propose a self-adaptive algorithm to cope with this RED weakness. In this algorithm we make two parameters be adjusted themselves depending on the queue states. One parameter is the maximum probability to drop or mark the packet at the congestion state. This parameter can be adjusted to react the long burst of traffic, consequently reducing the congestion disaster. The other parameter is the queue weight which is also adjusted aggressively in order for the average queue size to catch up with the current queue size when the queue moves from the congestion state to the stable state.

  • PDF

Design of Defence Mechanism against DDoS Attacks in NCP-based Broadband Convergence Networks (NCP 기반의 광대역 융합 망에서 DDoS 공격 대응 기법 설계)

  • Han, Kyeong-Eun;Yang, Won-Hyuk;Yoo, Kyung-Min;Yoo, Jae-Young;Kim, Young-Sun;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.8-19
    • /
    • 2010
  • In this paper, we propose the NCP (Network Control Platform)-based defense mechanism against DDoS (Distributed Denial of Service) attacks in order to guarantee the transmission of normal traffic and prevent the flood of abnormal traffic. We also define defense modules, the threshold and packet drop-rate used for the response against DDoS attacks. NCP analyzes whether DDoS attacks are occurred or not based on the flow and queue information collected from SR (Source Router) and VR (Victim Router). Attack packets are dopped according to drop rate decided from NCP. The performance is simulated using OPNET and evaluated in terms of the queue size of both SR and VR, the transmitted volumes of legitimate and attack packets at SR.

A Security Model based on Reputation and Collaboration through Route-Request in Mobile Ad Hoc Networks

  • Anand, Anjali;Rani, Rinkle;Aggarwal, Himanshu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4701-4719
    • /
    • 2015
  • A Mobile Ad hoc Network (MANET) consists of mobile nodes which co-operate to forward each other's packets without the presence of any centralized authority. Due to this lack of centralized monitoring authority, MANETs have become vulnerable to various kinds of routing misbehaviour. Sometimes, nodes exhibit non-cooperating behaviour for conserving their own resources and exploiting others' by relaying their traffic. A node may even drop packets of other nodes in the guise of forwarding them. This paper proposes an efficient Reputation and Collaboration technique through route-request for handling such misbehaving nodes. It lays emphasis not only on direct observation but also considers the opinion of other nodes about misbehaving nodes in the network. Unlike existing schemes which generate separate messages for spreading second-hand information in the network, nodes purvey their opinion through route-request packet. Simulation studies reveal that the proposed scheme significantly improves the network performance by efficiently handling the misbehaving nodes in the network.