• Title/Summary/Keyword: Packet Delay

Search Result 1,167, Processing Time 0.024 seconds

MP-AODV : A New Multipath Routing Protocol Based on AODV in Mobile Ad Hoc Networks (MP-AODV : AODV 기반 모바일 Ad-Hoc 네트워크에서의 다중경로 라우팅 프로토콜)

  • Lee, Yun-Sung;Chung, Sang-Hwa
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.131-142
    • /
    • 2011
  • In this paper, we propose a new multipath routing protocol and compare it with other multipath routing protocols in mobile ad hoc network (MANET) environments. The new multipath routing establishes the main route using a mechanism based on Ad Hoc On-demand Distance Vector(AODV), after which data transmission starts immediately. The backup route search process takes place while data are transmitted, to reduce the transmission delay. The protocol can also operate in a hybrid node-disjoint/link-disjoint mode, where the protocol finds the node-disjoint backup route first; if the node-disjoint does not exist, the protocol discovers the link-disjoint backup route from the main route. When either of the main route or the backup route is broken, data are transmitted continuously through the other route and the broken route is recovered by the route maintenance process. The results of simulations, based on the Qualnet simulator, show that the proposed multipath routing protocol increases the packet transmission success rate and reduces end-to-end delays, when compared with AODV and AOMDV protocols.

Characteristics and Methods of Bandwidth Allocation According to Flow Features for QoS Control on Flow-Aware Network (Flow-Aware Network에서 QoS제어를 위해 Flow 특성에 따른 대역할당 방법과 특성)

  • Kim, Jae-Hong;Han, Chi-Moon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.9
    • /
    • pp.39-48
    • /
    • 2008
  • Recently, many multimedia services have emerged in Internet such as real-time and non- real time services. However, in this Internet environment, we have some limitations to satisfy each service feature. To guarantee the service features in Measurement-Based Admission Control(MBAC) based system on the flow-aware network, there is the method applying Dynamic Priority Scheduling(DPS) algorithm that gives a higher priority to an earlier incoming flow in all of the link bandwidth. This paper classifies all flows under several groups according to flow characteristics on per-flow MBAC algorithm based system. In each flow group, DPS algorithm is applied. This paper proposes two methods that are a DPS based bandwidth borrowing method and a bandwidth dynamic allocation method. The former is that if low priority class has available bandwidths, the flow of high priority class borrows the bandwidth of low priority class when high priority flow has insufficient bandwidth to connect a flow call. The later is that the each group has a minimum bandwidth and is allocated the bandwidth dynamically according to the excess rate for available bandwidth. We compare and analyze the characteristics of the two proposed methods through the simulation experiments. As the results of the experiment, the proposed methods are more effective than existing DPS based method on the packet loss and delay characteristics. Consequently the proposed two methods are very useful in various multimedia network environments.

Multi-Channel Pipelining for Energy Efficiency and Delay Reduction in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 지연 감소를 위한 다중 채널 파리프라인 기법)

  • Lee, Yoh-Han;Kim, Daeyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.11-18
    • /
    • 2014
  • Most of the energy efficient MAC protocols for wireless sensor networks (WSNs) are based on duty cycling in a single channel and show competitive performances in a small number of traffic flows; however, under concurrent multiple flows, they result in significant performance degradation due to contention and collision. We propose a multi-channel pipelining (MCP) method for convergecast WSN in order to address these problems. In MCP, a staggered dynamic phase shift (SDPS) algorithms devised to minimize end-to-end latency by dynamically staggering wake-up schedule of nodes on a multi-hop path. Also, a phase-locking identification (PLI) algorithm is proposed to optimize energy efficiency. Based on these algorithms, multiple flows can be dynamically pipelined in one of multiple channels and successively handled by sink switched to each channel. We present an analytical model to compute the duty cycle and the latency of MCP and validate the model by simulation. Simulation evaluation shows that our proposal is superior to existing protocols: X-MAC and DPS-MAC in terms of duty cycle, end-to-end latency, delivery ratio, and aggregate throughput.

Performance Analysis of the Gated Service Scheduling for Ethernet PON (Ethernet PON을 위한 Gated Service 스케줄링의 성능분석)

  • 신지혜;이재용;김병철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.31-40
    • /
    • 2004
  • In this paper, we analyze mathematically the performance of the gated service scheduling in the Interleaved Polling with Adaptive Cycle Time(IPACT) was proposed to control upstream traffic for Gigabit Ethernet-PONs. In the analysis, we model EPON MAC protocol as a polling system and use mean value analysis. We divide arrival rate λ into three regions and analyze each region accordingly In the first region in which λ value is very small, there are very few ONUs' data to be transmitted. In the second region in which λ has reasonably large value, ONUs have enough data for continuous transmission. In the third region, ONUs' buffers are always saturated with data since λ value is very large. We obtain average packet delay, average Queue size, average cycle time of the gated service. We compare analysis results with simulation to verify the accuracy of the mathematical analysis. Simulation requires much time and effort to evaluate the performance of EPONs. On the other hand, mathematical analysis can be widely used in the design of EPON systems because system designers can obtain various performance results rapidly. We can design appropriate EPON systems for varioustraffic property by adjusting control parameters.

A Maximally Disjoint Multipath Routing Protocol Based on AODV in Mobile Ad Hoc Networks (모바일 애드혹 네트워크에서의 AODV 기반 치대 비중첩 다중경로 라우팅 프로토콜)

  • Kim Jungtae;Moh Sangman;Chung Ilyong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.3 s.99
    • /
    • pp.429-436
    • /
    • 2005
  • A mobile ad hoc network (MANET) is a collection of mobile nodes without any fixed infrastructure or my form of centralized administration such as access points and base stations. The ad hoc on-demand distance vector routing (AODV) protocol is an on-demand routing protocol for MANETs, which is one of the Internet-Drafts submitted to the Internet engineering task force (IETF) MANET working group. This paper proposes a new multipath routing protocol called maximally disjoint multipath AODV (MDAODV), which exploits maximally node- and link-disjoint paths and outperforms the conventional multipath protocol based on AODV as well as the basic AODV protocol. The key idea is to extend only route request (RREQ) message by adding source routing information and to make the destination node select two paths from multiple RREQs received for a predetermined time period. Compared to the conventional multipath routing protocol, the proposed MDAODV provides more reliable and robust routing paths and higher performance. It also makes the destination node determine the maximally node- and link-disjoint paths, reducing the overhead incurred at intermediate nodes. Our extensive simulation study shows that the proposed MDAODV outperforms the conventional multipath routing protocol based on AODV in terms of packet delivery ratio and average end-to-end delay, and reduces routing overhead.

A Study on the Performance Analysis and synthesis for a Differentiated Service Networks (차등 서비스 네트워크에 대한 성능 분석과 합성에 대한 연구)

  • Jeon, Yong-Hui;Park, Su-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.123-134
    • /
    • 2002
  • The requirement for QoS (Quality of Service) has become an important Issue as real-time or high bandwidth services are increasing, such as Internet Telephony, Internet broadcasting, and multimedia service etc. In order to guarantee the QoS of Internet application services, several approaches are being sought including IntServ (Integrated Service) DiffServ(Differentiated Srvices), and MPLS(Multi-Protocol Label Switching). In this paper, we describe the performance analysis of QoS guarantee mechanism using the DiffServ. To analyze how the DiffServ performance was affected by diverse input traffic models and the weight value in WFQ(Weighted Fair Queueing), we simulated and performed performance evaluation under a random, bursty, and self-similar input traffic models and for diverse input parameters. leased on the results of performance analysis, it was confirmed that significant difference exist in packet delay and loss depending on the input traffic models used. However, it was revealed that QoS guarantee is possible to the EF (expedited Forwarding) class and the service separation between RF and BE (Best Effort) classes may also be achieved. Next, we discussed the performance synthesis problem. (i. e. derived the conservation laws for a DiffServ networks, and analysed the performance variation and dynamic behavior based on the resource allocation (i.e., weight value) in WFQ.

Service Curve Allocation Schemes for High Network Utilization with a Constant Deadline Computation Cost (상수의 데드라인 계산 비용으로 높은 네트웍 유용도를 얻는 서비스 곡선 할당 방식)

  • 편기현;송준화;이흥규
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.4
    • /
    • pp.535-544
    • /
    • 2003
  • Integrated services networks should guarantee end-to-end delay bounds for real-time applications to provide high quality services. A real-time scheduler is installed on all the output ports to provide such guaranteed service. However, scheduling algorithms studied so far have problems with either network utilization or scalability. Here, network utilization indicates how many real-time sessions can be admitted. In this paper, we propose service curve allocation schemes that result in both high network utilization and scalability in a service curve algorithm. In service curve algorithm, an adopted service curve allocation scheme determines both network utilization and scalability. Contrary to the common belief, we have proved that only a part of a service curve is used to compute deadlines, not the entire curve. From this fact, we propose service curve allocation schemes that result in a constant time for computing deadlines. We through a simulation study that our proposed schemes can achieve better network utilizations than Generalized processor Sharing (GPS) algorithms including the multirate algorithm. To our knowledge, the service curve algorithm adopting our schemes can achieve the widest network utilization among existing scheduling algorithms that have the same scalability.