• Title/Summary/Keyword: Pack cementation coatings

Search Result 15, Processing Time 0.022 seconds

Multi-layer Coating for Improvement Anti-wear Property of Graphite (흑연의 내마모성 증진을 위한 다층 코팅)

  • Suh, Im-Choon;Kim, Dong-Il;Yeh, Byung-Hahn;Jung, Bahl;Park, Chong-Ook
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.874-878
    • /
    • 1994
  • To increase the anti-oxidation and anti-wear properties of graphite for the propellant-burning environment, SiC, Pt and Al2O3 multi-layer coatings were conducted succesisvely and the optimum condition was researched. The SiC layer was produced by pack cementation and SiC layer in thickness of 30 ${\mu}{\textrm}{m}$ coating was produced after coating for 6 hours. Pt layer was coated by sputtering, and the Al2O3 layer was coated by reactive sputtering. the thickness of Pt layer and Al2O3 layer was less than one-tenth of that of SiC layer. The pack coated specimens and multi-layer coated specimens were made using above conditions and test-fired. The test result showed that the wear rate of SiC layer is approximately 1/10 compared to that of uncoated graphite.

  • PDF

High temperature properties of surface-modified Hastelloy X alloy (표면처리에 따른 Hastelloy X 합금의 고온물성)

  • Cho, Hyun;Lee, Byeong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.183-189
    • /
    • 2012
  • Surface treatments and their effects on high temperature properties for the Hastelloy X, which is a promising candidate alloy for high temperature heat-transport system, have been evaluated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods using an arc discharge and a sputtering, were applied, respectively. In addition, a different surface treatment method of the diffusion coating by a pack cementation of Al (aluminiding) was also adopted in this study. To achieve enhanced thermal oxidation resistance at $1000^{\circ}C$ by suppressing the inhomogeneous formation of thick $Cr_2O_3$ crust at the surface region, a study for the surface modification methods on the morphological and structural properties of Hastelloy X substrates has been conducted. The structural and compositional properties of each sample were characterized before and after heat-treatment at $1000^{\circ}C$ under air and He environment. The results showed that the Al diffusion coating showed the more enhanced high temperature properties than the overlay coatings such as the suppressed thick $Cr_2O_3$ crust formation and lower wear loss.

Oxidation Behaviors and Degradation Properties of Aluminide Coated Stainless Steel at High Temperature (알루미나이드 확산코팅된 스테인레스 합금의 내산화 및 내삭마 특성)

  • Hwang, Cheol Hong;Lee, Hyo Min;Oh, Jeong Seok;Hwang, Dong Hyeon;Hwang, Yu Seok;Lee, Jong Won;Choi, Jeong Mook;Park, Joon Sik
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.396-402
    • /
    • 2021
  • Stainless steel, a type of steel used for high-temperature parts, may cause damage when exposed to high temperatures, requiring additional coatings. In particular, the Cr2O3 product layer is unstable at 1000℃ and higher temperatures; therefore, it is necessary to improve the oxidation resistance. In this study, an aluminide (Fe2Al5 and FeAl3) coating layer was formed on the surface of STS 630 specimens through Al diffusion coatings from 500℃ to 700℃ for up to 25 h. Because the coating layers of Fe2Al5 and FeAl3 could not withstand temperatures above 1200℃, an Al2O3 coating layer is deposited on the surface through static oxidation treatment at 500℃ for 10 h. To confirm the ablation resistance of the resulting coating layer, dynamic flame exposure tests were conducted at 1350℃ for 5-15 min. Excellent oxidation resistance is observed in the coated base material beneath the aluminide layer. The conditions of the flame tests and coating are discussed in terms of microstructural variations.

Application of ultra-high-temperature ceramics to oxidation-resistant and anti-ablation coatings for carbon-carbon composite (탄소-탄소 복합재의 내삭마 내산화 코팅을 위한 초고온 세라믹스의 적용)

  • Kim, Hyun-Mi;Choi, Sung-Churl;Cho, Nam Choon;Lee, Hyung Ik;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.283-293
    • /
    • 2019
  • As applications in extreme environments such as aerospace, high-energy plasma and radio-active circumstances increases, the demand for materials that require higher melting points, higher mechanical strength and improved thermal conductivity continues to increase. Accordingly, in order to improve the oxidation/abrasion resistance of the carbon-carbon composite, which is a typical heat-resistant material, a method of using ultra high temperature ceramics was reviewed. The advantages and disadvantages of CVD coating, pack cementation and thermal plasma spraying, the simplest methods for synthesizing ultra-high temperature ceramics, were compared. As a method for applying the CVD coating method to C/C composites with complex shapes, the possibility of using thermodynamic calculation and CFD simulation was proposed. In addition, as a result of comparing the oxidation resistance of the TaC/SiC bi-layer coating and TaC/SiC multilayer coating produced by this method, the more excellent oxidation resistance of the multilayer coating on C/C was confirmed.

$Si_3N_4$ Coating for Improvement of Anti-oxidation and Anti-wear Properties by Low Pressure Chemical Vapor Deposition (저압화학기상증착법에 의한 $Si_3N_4$ 내산화.내마모 코팅)

  • Lee, Seung-Yun;Kim, Ok-Hee;Yeh, Byung-Hahn;Jung, Bahl;Park, Chong-Ook
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.835-841
    • /
    • 1995
  • The deposition properties of Si$_3$N$_4$ deposited by low pressure chemical vapor deposition were studied to evaluate Si$_3$N$_4$as part of multi-layer coatings for anti-oxidation and anti-wear coating of graphite in the propellant-burning environment. Si$_3$N$_4$was deposited on the pack-SiC coated graphite and the tendencies of deposition rate and surface morphology changes with temperatures and reaction gas ratios were investigated. In low deposition temperatures the deposition rate increased tilth increasing temperature but in high temperatures the deposition rate decreased with increasing temperature. The grain size of Si$_3$N$_4$decreased with increasing temperature. In condition that the range of reaction gas ratios is 20$\leq$NH$_3$/SiH$_4$$\leq$40, the deposition rate and surface morphology did not change. The Si$_3$N$_4$deposited at 800~130$0^{\circ}C$ was amorphous, and by post-annealing at 130$0^{\circ}C$ in a $N_2$ambient, the Si$_3$N$_4$crystalized.

  • PDF