• Title/Summary/Keyword: PZT-based

Search Result 296, Processing Time 0.025 seconds

Seeding Effects on Phase Transformation in Diol-Based Sol-Gel Derived PZT Film (졸-겔 공정에 의해 Diol을 기반으로 제조된 PZT막 상전이에 대한 종자 영향)

  • An, Byung-Hun;Whang, Chin-Myung
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1181-1187
    • /
    • 1999
  • PZT(53/47) precursor 1M sols were prepared using a diol based Sol-Gel process, and thin films were deposited by spin coating onto Pt/Ti/$SiO_2$/Si substrates. With a single coating, final film thickness of aproximately 0.9${\mu}m $ was achieved from diol-based PZT sol. Since PZT crystallized in a ferroelectric perovskite phase from an intermediate nonferroelectric pyrochlore phase, the effects of the presence of perovskite PZT seeds on the phase transformation of PZT were investigated. Seeded PZT films were prepared from the seeded PZT 1M sols in which seeds with less than 0.2${\mu}m $ in size and 1wt% were dispersed in n-propanol before mixing with the PZT stock solution. The seeding effects were confirmed by the fact that the formation temperature of perovskite phase decreased by 50$^{\circ}C$ with less than 1wt% seeds.

  • PDF

Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response (PZT 소자의 정압전 응답을 이용한 보 구조물의 모드 변형에너지기반 손상 모니터링)

  • Ho, Duc-Duy;Lee, Po-Young;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • The main objective of this study is to examine the feasibility of using lead zirconate titanate (PZT)'s direct piezoelectric response as vibrational feature for damage monitoring in beam structures. For the purpose, modal strain energy (MSE)-based damage monitoring in beam structures using dynamic strain response based on the direct piezoelectric effect of PZT sensor is proposed in this paper. The following approaches are used to achieve the objective. First, the theoretical background of PZT's direct piezoelectric effect for dynamic strain response is presented. Next, the damage monitoring method that utilizes the change in MSE to locate of damage in beam structures is outlined. For validation, forced vibration tests are carried out on lab-scale cantilever beam. For several damage scenarios, dynamic responses are measured by three different sensor types (accelerometer, PZT sensor and electrical strain gage) and damage monitoring tasks are performed thereafter. The performance of PZT's direct piezoelectric response for MSE-based damage monitoring is evaluated by comparing the damage localization results from the three sensor types.

Fabrication and Characteristics of Small Sized PZT Powders by using a Propyl Alcohol based Sol-Gel Method

  • Choi, Kyu-M.;Lee, Yun-S.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.904-908
    • /
    • 2009
  • The PZT(lead, zirconium, titanium) based ceramics which, are reported to be ferroelectric materials have their important applications in the areas of surface acoustic waves (SAW), filters, infrared detectors, actuators, ferroelectric random acess memory, speakers, electronic switches etc. Moreover, these PZT materials possess the large electromechanical coupling factor, large spontaneous polarization, low dielectric loss and low internal stress etc. Hence, keeping in view the unique properties of PZT piezoelectric ceramics we also tried to synthesize indigenously the small sized PZT ceramic powder in the laboratory by using the modified sol-gel approach. In this paper, Propyl alcohol based sol-gel method was used for preparation of PZT piezoelectric ceramic. The powder obtained by this sol-gel process was calcined and sintering to reach a pyrochlore-free crystal phase. The characterization of synthesized material was carried out by the XRD analysis and the surface morphology was determined by high resolution scanning electron microscopy.

Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection

  • Ryu, Joo-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.237-253
    • /
    • 2017
  • Among various structural health monitoring technologies, impedance-based damage detection has been recognized as a promising tool for diagnosing critical members of civil structures. Since the piezoelectric transducers used in the impedance-based technique should be bonded to the surface of the structure using bonding layers (e.g., epoxy layer), it is hard to maintain the as-built condition of the bonding layers and to reconfigure the devices if needed. This study presents an experimental investigation by using magnetically attached PZT-interface for the impedance-based damage detection in bolted girder connections. Firstly, the principle of the impedance-based damage detection via the PZT-interface device is outlined. Secondly, a PZT-interface attachment method in which permanent magnets are used to replace the conventional bonding layers is proposed. Finally, the use of the magnetic attraction for the PZT-interface is experimentally evaluated via detecting the bolt-loosening events in a bolted girder connection. Also, the sensitivity of impedance signatures obtained from the PZT-interface is analyzed with regard to the interface's material.

A Study on Energy Harvester with Cantilever Structure Using PZT Piezoelectric Material (PZT 압전재료를 이용한 외팔보 구조의 에너지 수집기에 관한 연구)

  • Cha, Doo-Yeol;Lee, Soo-Jin;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.416-421
    • /
    • 2011
  • Nowadays, the increasing demands upon mobile devices such as wireless sensor networks and the recent advent of low power electrical devices such as MEMS make such renewable power sources attractive. A vibration-driven MEMS lead zirconate titanate $Pb(Zr,Ti)O_3$ (PZT) cantilever device is developed for energy harvesting application. This paper presents a piezoelectric based energy harvester which is suitable for power generating from conventional vibration and has in providing energy for low power electron ic devices. The PZT cantilever is used d33 mode to get the electrical power. The PZT cantilever based energy harvester with the dimension of 7 mm${\times}$3 mm${\times}$0.03 mm is fabricated using micromachining technologies. This PZT cantilever has the mechanical resonance frequency with a 900 Hz. With these conditions, we get experimentally the 37 uW output power from this device with the application of 1g acceleration using the 900 Hz vibration. From this study, we show the feasibility of one of energy harvesting candidates using PZT based structure. This PZT energy harvester could be used for various applications such a batteryless micro sensors and micro power generators.

Structural and Dielectric Properties of PZT(20/80)/PZT(80/20) Heterolayered Thin Films Prepared by Sol-Gel Method (Sol-Gel법으로 제작한 PZT(20/80)/PZT(80/20) 이종층 박막의 구조 및 유전 특성)

  • 심광택;이영희
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.983-988
    • /
    • 1997
  • We investigated the structural and dielectric properties of PZT(20/80)/PZT(80/20) heterolayered thin films that fabricated by the alkoxide-based Sol-Gel method. PZT(20/80)/PZT(80/20) heterolayered thin films were spin-coated on the Pt/Ti/SiO$_2$/Si substrate with PZT(20/80) film of tetragonal structure and PZT(80/20) film of rhombohedral structure by turns. Each layers were dried to remove the organic materials at 30$0^{\circ}C$ for 30min and sintered at $650^{\circ}C$ for 1hr. This procedure was repeated several times to form PZT(20/80)/PZT(80/20) heterolayered films and thickness of the film obtained by one-times of drying/sintering process was approximately 80-90nm. PZt-1, 3, 5 films with top layer of PZT(20/80) film of tetragonal structure showed fine grain structure and PZT-2, 4, 6 films with top layer of PZT(80/20) film of rhombohedral structure showed the dense grain microstructure without rosette-type. Dielectric constant and dielectric loss of the PZT-6 film were approximaterly 1385 and 3.3% respectively. Increasing the number of coatings remanent polarization was increased and coercive field was decreased and the values of the PZT-6 film were 8.13$\mu$C/cm$^2$and 12.5kV/cm respectively.

  • PDF

Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.489-504
    • /
    • 2012
  • For the safety of prestressed structures such as cable-stayed bridges and prestressed concrete bridges, it is very important to ensure the prestress force of cable or tendon. The loss of prestress force could significantly reduce load carrying capacity of the structure and even result in structural collapse. The objective of this study is to present a smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection. Firstly, a smart PZT-interface is newly designed for sensitively monitoring of electro-mechanical impedance changes in tendon-anchorage subsystem. To analyze the effect of prestress force, an analytical model of tendon-anchorage is described regarding to the relationship between prestress force and structural parameters of the anchorage contact region. Based on the analytical model, an impedance-based method for monitoring of prestress-loss is conducted using the impedance-sensitive PZT-interface. Secondly, wireless impedance sensor node working on Imote2 platforms, which is interacted with the smart PZT-interface, is outlined. Finally, experiment on a lab-scale tendon-anchorage of a prestressed concrete girder is conducted to evaluate the performance of the smart PZT-interface along with the wireless impedance sensor node on prestress-loss detection. Frequency shift and cross correlation deviation of impedance signature are utilized to estimate impedance variation due to prestress-loss.

Deposition of Piezoelectric PZT(53/47) Film by Metalorganic Decomposition for Micro electro mechanical Device (Microelectromechnical system 소자 제작을 위한 유기금속분해법에 의한 압전성 PZT(53/47)박막의 증착)

  • 윤영수;정형진;신영화
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.458-464
    • /
    • 1998
  • This paper gives characterization of substrate and PZT(53/47) thin film deposited by metalorganic decomposition, which is concerned in deposition process and device fabrication process, to fabricate micro electro mechanical system (MEMS) device with piezoelectric material. The PZT thin films deposited by MOD at 700^{\circ}C$ for 30 minutes had a polycrystallinity, that is, no substrate dependence, while different interface were developed depending on the bottom electrodes. Such a structural variation could influence on not only the properties of the PZT film but also etching process for fabricating MEMS devices. Therefore the electrode structure is a very important factor in the deposition of the PZT film during etching process by HF acid for MEMS device with piezoelectric material. Piezoelectric coefficients of the PZT films on the different substrates were 40 and 80 pm/V at an applied voltage of 4V. Based in these results, it was possible for deposition of the PZT film by MOD to apply MEMS device fabrication process based on piezoelectricity after selection of proper bottom electrode.

  • PDF

Damage detection in beam-type structures via PZT's dual piezoelectric responses

  • Nguyen, Khac-Duy;Ho, Duc-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.217-240
    • /
    • 2013
  • In this paper, practical methods to utilize PZT's dual piezoelectric effects (i.e., dynamic strain and electro-mechanical (E/M) impedance responses) for damage detection in beam-type structures are presented. In order to achieve the objective, the following approaches are implemented. Firstly, PZT material's dual piezoelectric characteristics on dynamic strain and E/M impedance are investigated. Secondly, global vibration-based and local impedance-based methods to detect the occurrence and the location of damage are presented. Finally, the vibration-based and impedance-based damage detection methods using the dual piezoelectric responses are evaluated from experiments on a lab-scaled beam for several damage scenarios. Damage detection results from using PZT sensor are compared with those obtained from using accelerometer and electric strain gauge.

Health monitoring of steel structures using impedance of thickness modes at PZT patches

  • Park, Seunghee;Yun, Chung-Bang;Roh, Yongrae;Lee, Jong-Jae
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.339-353
    • /
    • 2005
  • This paper presents the results of a feasibility study on an impedance-based damage detection technique using thickness modes of piezoelectric (PZT) patches for steel structures. It is newly proposed to analyze the changes of the impedances of the thickness modes (frequency range > 1 MHz) at the PZT based on its resonant frequency shifts rather than those of the lateral modes (frequency range > 20 kHz) at the PZT based on its root mean square (RMS) deviations, since the former gives more significant variations in the resonant frequency shifts of the signals for identifying localities of small damages under the same measurement condition. In this paper, firstly, a numerical analysis was performed to understand the basics of the NDE technique using the impedance using an idealized 1-D electro-mechanical model consisting of a steel plate and a PZT patch. Then, experimental studies were carried out on two kinds of structural members of steel. Comparisons have been made between the results of crack detections using the thickness and lateral modes of the PZT patches.