• Title/Summary/Keyword: PZT transducers

Search Result 72, Processing Time 0.022 seconds

Non-destructive evaluation of concrete quality using PZT transducers

  • Tawie, R.;Lee, H.K.;Park, S.H.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.851-866
    • /
    • 2010
  • This paper presents a new concept of using PZT (lead zircornate titanate) transducers as a non-destructive testing (NDT) tool for evaluating quality of concrete. Detection of defects in concrete is very important in order to check the integrity of concrete structures. The electro-mechanical impedance (EMI) response of PZT transducers bonded onto a concrete specimen can be used for evaluating local condition of the specimen. Measurements are carried out by electrically exciting the bonded PZT transducers at high frequency range and taking response measurements of the transducers. In this study, the compression test results showed that concrete specimens without sufficient compaction are likely to fall below the desired strength. In addition, the strength of concrete was greatly reduced as the voids in concrete were increased. It was found that the root mean square deviation (RMSD) values yielded between the EMI signatures for concrete specimens in dry and saturated states showed good agreement with the specimens' compressive strength and permeable voids. A quality metric was introduced for predicting the quality of concrete based on the dry-saturated state of concrete specimens. The simplicity of the method and the current development towards low cost and portable impedance measuring system, offer an advantage over other NDE methods for evaluating concrete quality.

Application of smart piezoelectric transducers to structural health monitoring (구조물 건전성 감시를 위한 스마트 PZT센서의 적용성 연구)

  • Park, Seung-Hee;Yi, Jin-Hak;Lee, Jong-Jae;Yun, Chung-Bang;Noh, Yong-Rae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.549-555
    • /
    • 2003
  • The objective of かis study is to investigate the feasibility of piezoelectric transducers as a damage detection system for civil infrastructures. There have been considerable amount of efforts by the modal analysis community to localize damage and evaluate its severity without looking at a reliable way to excite the structure. The detection of damages by modal analysis and similar vibration techniques depends upon the knowledge and estimation of various modal parameters. In addition to the associated difficulties, such low-frequency dynamic response based techniques fail to detect incipient damages. Smart piezoelectric ceramic (PZT) transducers which act as both actuators and sensors in a self-analyzing manner are emerging to be effective in non-parametric health monitoring of structural systems. In this paper, we present the results of an experimental study for the detection of damages using smart PZT transducers on the steel plate. The method of extracting the impedance characteristics of the PZT transducer, which is electro-mechanically coupled to the host structure, is adopted for damage detection. Two damages are simulated and assessed by the bonded PZT transducers for characterization. The experimental results verified the efficacy of the proposed approach and provided a demonstration of good robustness at the realistic steel structures, emphasizing the great potential for developing an automated in situ structural health monitoring system for application to large civil infrastructures without the need to blow the modal parameters.

  • PDF

Pulse-echo response of ultrasonic transducer fabricated with PZT-polymer 3-3 type composite (PZT-고분자 3-3형 복합압전체 소자로 제작된 초음파 트랜스듀서의 펄스에코 응답특성)

  • 박정학;최헌일;손무현;사공건
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1053-1059
    • /
    • 1996
  • The pulse-echo response of the piezoceramics PZT-polymer 3-3 type composite transducers with various PVA additions were investigated. The PZT powder was prepared by the molten salt synthesis method. The porous PZT specimens will be used as a filler to make 3-3 type comosite were prepared from a mixture of PZT and polyvinylalcohol(PVA) sphere by utilizing BURPS(Bumout Plastic Sphere) technique. It was shown that the transmitting and receiving sensitivity of 3-3 type piezoelectric composite transducers could be improved than that of solid PZT transducers. The reason is that 3-3 type piezoelectric composite have low dielectric constant, density and acoustic impedance. The distance between transducer and reflector was in good agreement with the distance calculated from the longitudinal velocity of the specimens and receiving time observed pulse-echo responses on the ultrasonic transducer analyzer.

  • PDF

Damage detection of reinforced concrete columns retrofitted with FRP jackets by using PZT sensors

  • Tzoura, Efi A.;Triantafillou, Thanasis C.;Providakis, Costas;Tsantilis, Aristomenis;Papanicolaou, Corina G.;Karabalis, Dimitris L.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.165-180
    • /
    • 2015
  • In this paper lead zirconate titanate transducers (PZT) are employed for damage detection of four reinforced concrete (RC) column specimens retrofitted with carbon fiber reinforced polymer (CFRP) jackets. A major disadvantage of FRP jacketing in RC members is the inability to inspect visually if the concrete substrate is damaged and in such case to estimate the extent of damage. The parameter measured during uniaxial compression tests at random times for known strain values is the real part of the complex number of the Electromechanical Admittance (Conductance) of the sensors, obtained by a PXI platform. The transducers are placed in specific positions along the height of the columns for detecting the damage in different positions and carrying out conclusions for the variation of the Conductance in relation to the position the failure occurred. The quantification of the damage at the concrete substrate is achieved with the use of the root-mean-square-deviation (RMSD) index, which is evaluated for the corresponding strain values. The experimental results provide evidence that PZT transducers are sensitive to damage detection from an early stage of the experiment and that the use of PZT sensors for monitoring and detecting the damage of FRP-retrofitted reinforced concrete members, by using the Electromechanical Admittance (EMA) approach, can be a highly promising method.

PVDF interdigitated transducer for generating and detecting Lamb waves in plates

  • Gu, Hua;Lloyd, George M.;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.291-304
    • /
    • 2008
  • Piezoelectric materials have been widely used in ultrasonic nondestructive testing (NDT). PZT ceramics can be used to receive and generate surface acoustic waves. It is a common application to attach PZT transducers to the surface of structures for detecting cracks in nondestructive testing. However, not until recently have piezoelectric polymers attracted more and more attention to be the material for interdigitated (IDT) surface and guided-wave transducers. In this paper, an interdigitated gold-on-polyvinylidene fluoride (PVDF) transducer for actuating and sensing Lamb waves has been introduced. A specific etching technology is employed for making the surface electrodes into a certain finger pattern, the spacings of which yield different single mode responses of Lamb waves. Experiments have been performed on steel and carbon fiber composite plates. Results from PVDF IDT sensors have been compared with those from PZT transducers for verification.

Pulse-echo response of 1-3 type piezoelectric composite transducers for distance measurement (거리 측정용 1-3형 복합압전체 트랜스듀서의 펄스에코 응답 특성)

  • 최헌일;박정학;이수호;사공건
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.211-216
    • /
    • 1995
  • In this study, the piezoelectric ceramics/polymer composite transducers with 1-3 connectivity have been studied. A piezoelectric ceramics PZT prepared by Wet-Dry Combination method was used as a filler in polymer matrix Eccogel. We've got the pulse-echo response for 1-3 type piezc-electric composite transducers in water. It was shown that the transmitting and receiving sensitivity of 1-3 type piezoelectric composite transducers could be improved in comparison with that- of solid PZT transducers. The reason is for that 1-3 type Piezoelectric composites have low dielectric constant and density. There was in a good agreement between the resonant frequencies calculated from one period and observed results on the Ultrasonic Transducer Analyzer. According to these results we could be figured out the distance in water by virture of the pulse-echo response.

  • PDF

Fabrication of dual mode ultrasonic transducers with PZT piezoelectric ceramics (PZT 압전 세라믹스를 사용한 2중 모우드 초음파 트랜스듀서 제작)

  • 김연보;노용래;남효덕
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.572-579
    • /
    • 1995
  • Most of conventional ultrasonic transducers are constructed to generate either longitudinal or shear waves, but not both of them. We investigate the mechanism of dual mode transducers that generate both of the longitudinal and shear waves simultaneously with single PZT element. The study is aimed to find the optimally desired cut by examining the anisotropic piezoelectric properties. Theory predicts that a mixed P/S mode transducer can be constructed using a rotated Z-cut of PZT piezoelectric ceramics. We study the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves as much as equally strong. The results are verified by the waveform in pulse-echo computer simulation and experiments. When the transducer is subjected to impedance analysis, it shows two thickness mode resonances, each of which being a mixed P/S thickness mode. By examining wave speeds on E transmitter delay line receiver setup, it is confirmed that the transducer can transmit and detect both longitudinal and shear wave simultaneously.

  • PDF

Design and Piezoelectric properties of 2-2 piezocomposite Ultrasonic Transducers by means of the Finite Element Methode (유한요소해석법을 이용한 2-2형 압전복합재료 초음파 트랜스듀서의 설계 및 압전특성)

  • Park, Jae-Sung;Lee, Sang-Wook
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.40-46
    • /
    • 2011
  • In this study, PZT-5A green sheet were prepared by using tape casting technique, and the piezoelectric properties of PZT-5A by variation of sintering temperature was investigated. After, design and piezoelectric properties of 2-2 piezocomposite ultrasonic transducers by menas of the FEA. The acoustic impedance and piezoelectric charge constant of the 2-2 type piezocomposite transducer decreased proportionally due to the density decrease caused by the PZT volume fraction decrease. The piezocomposite acoustic impedance were 7~3 MRayl between 0.6 and 0.2 allowing it to be used for a ultrasonic transducer. The resonance characteristics and the electro-mechanical coupling factor were the best when the volume fraction PZT was 0.6. The PZT volume fraction shows the fixed value, 0.6~0.65, approximately within the range between 0.2 and 0.6 while it is increased to decreased over the range. The result of the experiment above confirmed that the 2-2 piezoelectric composites could be used as the ultrasonic transducers.

A Dual Mode Ultrasonic Transducer with a PZT Piezoelectric Seramics (PZT 압전 세라믹스를 사용한 2 중 모우드 초음파 변환기)

  • 김연보;노용래;남효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.1-4
    • /
    • 1995
  • The most of conventional ultrasonic transducers are constructed to generate either longitudinal or shear waves, but not both of them. We investigated the mechanism of dual mode transducers that generates both of the longitudinal and shear waves simultaneously with a single PZT element. The study has been aimed to find the desired cut by the examining the piezoelectric properties. Theory predicts that a mixed P/S mode transducer can be constructed using a related Z-cut of a PZT ceramics. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves equally strongly. The results are verified by checking the impedance variation of the element with Finite Element Methods, and chocking the wave form by pulse-echo test simulation. Based upon the theory a rotated Z-cut was prepared and a transducer were fabricated. Validity of the theory calculation is verified through the

  • PDF

PZT/PVDF Composite Ultrasonic Transducers and Its Experimental Estimate (PZT /PVDF 복합구조 초음파 트랜스듀서의 제안과 실험적 검토)

  • 김동현
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.64-67
    • /
    • 1997
  • PZT 및 PVDF의 장점을 이용한 송.수신 일체의 PZT/PVDF 복합구조 초음파 트랜스듀서를 제안하고, 그 특성을 분포정수형 등가회로를 이용하여 해석하였다. 특히 수신부의 PVDF를 다층으로 하여 송.수신 특성을 상당히 개선할 수 있음을 확인하였다.

  • PDF