• Title/Summary/Keyword: PZT Ceramics

Search Result 493, Processing Time 0.026 seconds

Low Temperature Sintering of PNN-PZT Ceramics and Its Electrical Properties (PNN-PZT 세라믹스의 저온 소결 및 전기적 특성 평가)

  • Lee, Myung-Woo;Kim, Sung-Jin;Yoon, Man-Soon;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1077-1082
    • /
    • 2008
  • To fabricate a multi-layered piezoelectrics/electrodes structure, the piezoelectrics should be sintered at the temperature lower than $950^{\circ}C$ to use the silver electrode, which is cheaper than the electrodes containing noble metals such as Pd and Pt. Therefore, in this study, we modified the composition of $Pb(Zr,Ti)O_3$-based material as $(Pb_{0.98}Cd_{0.02})(Ni_{1/3}Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}O_3$ to lower the sintering temperature and to improve the piezoelectric properties. Small amount of $MnCO_3$, $SiO_2$, and $Pb_3O_4$ were also added to lower the sintering temperature of the ceramic. The prepared raw powders were mixed by using a ball mill for 24 hours. And then the mixed powders were calcinated for 2 hours at $800^{\circ}C$. The calcinated powders were again crushed with the ball mill for 72 hours. The final powders were pressed for making the shape of ${\emptyset}15\;mm$ disk. The disk-type samples were sintered at temperature range of $850{\sim}950^{\circ}C$. The crystal phases of the sintered specimens were perovskite structure without secondary phases. All of the measured electrical properties such as electromechanical coupling coefficients ($k_p$), mechanical quality factors ($Q_m$), and piezoelectric charge constants ($d_{33}$) were decreased with decreasing the sintering temperatures. The electrical properties measured at the sample sintered at $950^{\circ}C$ were 54% of $k_p$, 503 of $Q_m$, and 390 pC/N of $d_{33}$, respectively. These properties were considered to be fairly good for the application of multi-layered piezoelectric generators or actuators.

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

Microstructural and Piezoelectric Characteristics of PMN-PNN-PZT Ceramics Manufactured by High Energy Milling (고에너지밀링에 의해 제작된 PMN-PNN-PZT 세라믹스의 미세구조 및 압전 특성)

  • Lee, Yu-Hyong;Lee, Sang-Ho;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.344-344
    • /
    • 2008
  • 최근 들어, 압전 세라믹스 제조기술의 급속한 발전으로 기계, 전자뿐만 아니라 휴대용 전자기기의 초소형 적층형 압전모터 및 압전변압기 같은 고품질 압전소자의 개발에 있어 특히 소자의 소형화에 따라 나노크기의 분말제조가 연구의 주류를 이루고 있다. 현재 이러한 나노크기의 세라믹스 제조에 사용되는 방법으로는 화학적 공침법, 졸겔법, 수열반응, 그리고 고에너지 볼밀법등이 보고되고 있다. 볼밀링 공정은 세라믹제조 시 필수 불가결한 공정이나 일반적으로 미세화에 그 한계가 있어 $1{\mu}m$이하의 입자크기를 가지는 분말은 제조가 곤란한 것으로 인식되어 왔다. 그러나 고에너지 볼밀을 이용한 볼밀링은 원료의 변형, 파괴 등과 같은 원료의 물리적 변화 뿐만 아니라 원료를 구성하는 원자/분자 구조에 영향을 미쳐 원료의 화학적 특성의 변화를 유발한다. 이러한 화학적 특성의 변화는 이종 원료간의 화학 반응성을 향상시켜 밀링 중에 새로운 화학종의 생성을 유발하게 되는데 이러한 현상을 mechanochemical 효과라 한다. 이러한 mechanochemical 효과는 나노 분말 입자의 제조뿐만 아니라, 분자설계, 재료합성, 자원처리 및 리사이클링 등에도 그 적용이 시도되고 있다. 이러한 mechanochemical 효과를 이용하여 분말을 미세화 함으로써 저온 소결과 재료특성 향상을 기대해 볼 수 있다. 따라서, 이번 연구에서는 우수한 압전 특성을 가진 PMN-PNN-PZT조성을 가지고 시편을 제작하였으며, 고에너지 볼밀시간에 따라 그 압전 및 유전특성을 조사하였다.

  • PDF

Dielectric and Piezoelectric Properties of Low Temperature Sintering PZN-PZT Ceramics with a variation of $Li_2CO_3$ Addition ($Li_2CO_3$ 첨가에 따른 저온소결 PZN-PZT 세라믹스의 유전 및 압전특성)

  • Lee, Yu-Hyong;Lee, Sang-Ho;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.307-307
    • /
    • 2007
  • 압전액츄에이터 및 초음파진동자는 전자제품의 소형화 및 경량화, 의료기기, 모바일기기 및 소형로붓의 발전에 힘입어 그 활용범위가 넓게 확장되고 있다. 1960년 Smolenski등에 의해 $A(B_1,B_2)O_3$형 복합 페로브스카이트 구조를 갖는 강유전성 세라믹스에 대한 연구가 시작된 이래 $Pb(Co,Nb)O_3-Pb(Zr,Ti)O_3$, $Pb(Zn,Nb)O_3-Pb(Zr,Ti)O_3$, $Pb(Mg,Nb)O_3-Pb(Zr,Ti)O_3$ 등 3성분계 세라믹스의 유전, 압전 및 강유전 특성에 대한 많은 연구가 진행되어 왔다. 그러나 압전성이 우수한 세라믹스들은 Pb가 포함되어 있기 때문에 $1000^{\circ}C$ 이상에서 PbO가 급격하게 휘발되는 성질에 따라서 조성의 변동이 생겨 재현성이 어려우며 이를 방지하기 위하여 과잉 PbO를 첨가시키기 때문에 환경오염뿐만 아니라, 경제적인 측면에서도 많은 문제점을 가지고 있다. 소결조제를 이용한 산화물 첨가법은 PbO의 휘발을 억제하는 저온소결 방법중 가장 효과적인 방법으로 알려져 있다. 따라서, 본 연구에서는 적층형 압전액츄에이터로 사용하기위한 저온소결 압전세라믹스를 개발하기 위하여 PZN-PZT세라믹스에 $Li_2CO_3$, $Bi_2O_3$, CuO 를 소결조제로 사용하여 $Li_2CO_3$의 첨가량 변화에 따른 압전 및 유전 특성을 관찰하였다.

  • PDF

Optimization of the Unimorph Cantilever Generator (UCG) Using Pb(Zr0.54Ti0.46)O3 + 0.2 wt% Cr2O3 + 1.0 wt% Nb2O5 thick films (Pb(Zr0.54Ti0.46)O3 + 0.2 wt% Cr2O3 + 1.0 wt% Nb2O5 조성의 압전 후막을 이용한 유니몰프형 캔틸레버 발전기(UCG)의 최적화)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Yun, Ji-Sun;Jeong, Young Hun;Nahm, Jung Hee;Cho, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn;Seong, Tae-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.955-960
    • /
    • 2012
  • We fabricated piezoelectric unimorph cantilever generators (UCG) using $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZCN) piezoelectric thick films, which were produced by a tape casting method. The PZCN thick films were tailored with same width and thickness but different lengths from 7.7 to 57.7 mm in order to evaluate optimized UCG for energy harvesting device applications. When the length of PZCN film was increased, the resonance frequency of UCG was slightly increased from 7 Hz to 8 Hz, which could be due to enlarged area of the highly stiff piezo-ceramic film. However, the output power was proportionally increased with the length of PZCT film and it reached 4.68 mW (1.221 $mW/cm^3$) when the film's length was 57.7 mm under 25 g of tip mass at 8 Hz, which is sufficient for micro-scale device applications.

Electrocaloric Effect of (Bi0.5Na0.5)TiO3 Ceramics ((Bi0.5Na0.5)TiO3 세라믹스의 유전 및 전기열량 특성)

  • Han, Jong-Dae;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.284-287
    • /
    • 2017
  • The electrocaloric effect in $0.94(Bi_{0.5}Na_{0.5})TiO_3+0.06KNbO3+0.9wt%$ G.F.ferroelectricceramics was observed in terms of the temperature change (${\Delta}T$) of the fabricated ceramics, Curie temperature $T_c$, and applied electric field. The specimens were fabricated by a conventional solid-state reaction. $T_c$ appeared near $165{\sim}170^{\circ}C$. The P-E hysteresis showed a tendency to slim down with a temperature increase and finally was slimmest near $150^{\circ}C$. With the increase of temperature, the polarization revealed a gradual decrease, and a sharp decline near $T_c$. When an electric field of 45 kV/cm was applied, the largest polarization was shown. The maximum value of the temperature change (${\Delta}T=0.31^{\circ}C$) was obtained at $165^{\circ}C$ under an applied electric field of 45 kV/cm.

A study on the dielectric characteristics of PWM-PSN-PZT ceramics with additive (첨가제에 의한 PWM-PSN-PZT계 세라믹의 유전특성에 관한 연구)

  • Shin, Hyea-Kyoung;Song, Hyun-Jea;Kim, Yu-Shin;Bae, Seon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.107-109
    • /
    • 2003
  • This paper was to measure the structure, piezoelectric properties of $0.03Pb(Mg_{0.5}W_{0.5})O_3$ - $0.12Pb(Sb_{0.5}Nb_{0.5})O_3$ - $0.85Pb(Zr_{0.52}Ti_{0.48})O_3$ + $0.5[wt%]MnO_2$ ceramics dropped with additive CuO after manufacturing the specimens with a general method. It is shown that X-ray diffraction pattern variation of lines (211) have tendency to move minutely by addition of additive CuO. According to dropping with Cu, the dielectric constant at 20[$^{\circ}C$] reduced to CuO 3.0[wt%]. In case of sintering at 1050[$^{\circ}C$], dielectric constant was maximum value 623.59 at CuO 1.0[wt%]. Dielectric loss was maximum value 2.7[%] at Cu 2.0[wt%] in case of sintering at 1050[$^{\circ}C$].

  • PDF

Pyroelectric Properties of Modified PZT Ceramics with $MnO_2$ Addition (Mn Oxide의 첨가에 따른 PSS-PT-PZ 세라믹의 초전특성)

  • Shin, Sang-Hyun;Kim, Young-Hun;Park, Ki-Woon;Kang, Dong-Heon;Kim, Young-Ho;Kil, Sang-Kun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.746-748
    • /
    • 2002
  • The effect of $MnO_2$ addition in $0.05Pb(Sn_{0.5}Sb_{0.5})O_3-0.8PbZrO_3-0.15PbTiO_3$(0.05PSS-0.8PZ-0.15PT) ceramics on crystal structure and electrical properties were studied. The sintering temperature and time were $1230^{\circ}C{\sim}1270^{\circ}C$ and 2hr, respectively. Then crystal structure, dielectric and pyroelectric properties were investigated. All the poled specimens showed the lower dielectric constant and $tan{\delta}$ than the unpoled specimens. Dielectric constant at 1kHz of the 0.05PSS-0.8PZ-0.15PT(MnO2 0.3wt%) system specimen sintered at $1250^{\circ}C$ for 2hr were 270 and showed the lowest $tan{\delta}$ of 0.2% after poling of $2kV_{DC}/mm$ at $150^{\circ}C$ for 30 minutes. Pyroelectric coefficient was maximum value of $50nC/cm^2K$ and Curie temperature was $224^{\circ}C$.

  • PDF

Dielectric and Piezoelectric Properties of "Lead-free" Piezoelectric Rhombohedral Ba(Ti0.92Zr0.08)O3 Single Crystals

  • Lee, Jong-Yeb;Oh, Hyun-Taek;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.171-177
    • /
    • 2016
  • Rhombohedral $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals are fabricated using the cost-effective solid-state single crystal growth (SSCG) method; their dielectric and piezoelectric properties are also characterized. Measurements show that (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals have an electromechanical coupling factor ($k_{33}$) higher than 0.85, piezoelectric charge constant ($d_{33}$) of about 950 [pC/N], and piezoelectric voltage constant ($g_{33}$) higher than 40 [${\times}10^{-3}Vm/N$]. Especially the $d_{33}$ of (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals was by about six times higher than that of their ceramics. Because their electromechanical coupling factor ($k_{33}$) and piezoelectric voltage constant ($d_{33}$, $g_{33}$) are higher than those of soft PZT ceramics, it is expected that rhombohedral (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals can be used as "lead-free" piezoelectric materials in many piezoelectric applications such as actuator, sensor, and transducer.

Effects of piezoelectric material on the performance of Tonpilz transducer using finite element method (Tonpilz 트랜스듀서의 성능에 미치는 압전소재의 영향)

  • Seo, Jin-Won;Choi, Kyoon;Lee, Ho-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.139-144
    • /
    • 2016
  • Effects of the shape and size of the piezoelectric materials on the performance of tonpilz transducers were studied with a computer simulation using a finite element method (FEM). The diameter and height of the donut-shaped piezoelectric ceramics head mass were changed as variables. And the effect of the stack number was also investigated. Finally, if the piezoelectric ceramics were changed to a piezoelectric single crystal having high piezoelectric constants, how the performances especially, the output power and the TVR transmittance were affected was simulated by FEM. As a result, the output of transducer could be increased to 10 times of PZT-4 with replacement of relaxor single crystal of the same size.