• Title/Summary/Keyword: PZT's dynamic strain

Search Result 6, Processing Time 0.024 seconds

Damage detection in beam-type structures via PZT's dual piezoelectric responses

  • Nguyen, Khac-Duy;Ho, Duc-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.217-240
    • /
    • 2013
  • In this paper, practical methods to utilize PZT's dual piezoelectric effects (i.e., dynamic strain and electro-mechanical (E/M) impedance responses) for damage detection in beam-type structures are presented. In order to achieve the objective, the following approaches are implemented. Firstly, PZT material's dual piezoelectric characteristics on dynamic strain and E/M impedance are investigated. Secondly, global vibration-based and local impedance-based methods to detect the occurrence and the location of damage are presented. Finally, the vibration-based and impedance-based damage detection methods using the dual piezoelectric responses are evaluated from experiments on a lab-scaled beam for several damage scenarios. Damage detection results from using PZT sensor are compared with those obtained from using accelerometer and electric strain gauge.

Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response (PZT 소자의 정압전 응답을 이용한 보 구조물의 모드 변형에너지기반 손상 모니터링)

  • Ho, Duc-Duy;Lee, Po-Young;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • The main objective of this study is to examine the feasibility of using lead zirconate titanate (PZT)'s direct piezoelectric response as vibrational feature for damage monitoring in beam structures. For the purpose, modal strain energy (MSE)-based damage monitoring in beam structures using dynamic strain response based on the direct piezoelectric effect of PZT sensor is proposed in this paper. The following approaches are used to achieve the objective. First, the theoretical background of PZT's direct piezoelectric effect for dynamic strain response is presented. Next, the damage monitoring method that utilizes the change in MSE to locate of damage in beam structures is outlined. For validation, forced vibration tests are carried out on lab-scale cantilever beam. For several damage scenarios, dynamic responses are measured by three different sensor types (accelerometer, PZT sensor and electrical strain gage) and damage monitoring tasks are performed thereafter. The performance of PZT's direct piezoelectric response for MSE-based damage monitoring is evaluated by comparing the damage localization results from the three sensor types.

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

Spectral Element Formulation for Analysis of Lamb Wave Propagation on a Plate Induced by Surface Bonded PZT Transducers (표면 부착형 PZT소자에 의해 유발된 판 구조물의 램파 전달 해석을 위한 스펙트럼 요소 정식화)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Kang, Joo-Sung;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1157-1169
    • /
    • 2008
  • This paper presents spectral element formulation which approximates Lamb wave propagation by PZT transducers bonded on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by a piezoelectric (PZT) layer rigidly bonded on a base plate. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Euler-Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with the electro-mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are obtained through equations of motions converted into frequency domain. Detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through numerical examples.

Wireless structural health monitoring of stay cables under two consecutive typhoons

  • Kim, Jeong-Tae;Huynh, Thanh-Canh;Lee, So-Young
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.47-67
    • /
    • 2014
  • This study has been motivated to examine the performance of a wireless sensor system under the typhoons as well as to analyze the effect of the typhoons on the bridge's vibration responses and the variation of cable forces. During the long-term field experiment on a real cable-stayed bridge in years 2011-2012, the bridge had experienced two consecutive typhoons, Bolaven and Tembin, and the wireless sensor system had recorded data of wind speeds and vibration responses from a few survived sensor nodes. In this paper, the wireless structural health monitoring of stay cables under the two consecutive typhoons is presented. Firstly, the wireless monitoring system for cable-stayed bridge is described. Multi-scale vibration sensor nodes are utilized to measure both acceleration and PZT dynamic strain from stay cables. Also, cable forces are estimated by a tension force monitoring software based on vibration properties. Secondly, the cable-stayed bridge with the wireless monitoring system is described and its wireless monitoring capacities for deck and cables are evaluated. Finally, the structural health monitoring of stay cables under the attack of the two typhoons is described. Wind-induced deck vibration, cable vibration and cable force variation are examined based on the field measurements in the cable-stayed bridge under the two consecutive typhoons.

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.