• 제목/요약/키워드: PWPF modulator

검색결과 3건 처리시간 0.018초

추력기 제어를 위한 PWPF 설계변수 설계 (PWPF Parameters Design for Thruster Control)

  • 김태석;이승우
    • 한국항공우주학회지
    • /
    • 제45권10호
    • /
    • pp.872-880
    • /
    • 2017
  • 일반적으로 추력기는 on/off 제어 방식을 이용한다. Bang-Bang Control, PWM(Pulse Width Modulator), PWPF(Pulse Width Pulse Frequency) 등이 그 방법으로 많이 이용되고 있다. PWPF를 설계할 때 파라미터($K_m$, ${\tau}$, $U_{on}$, $U_{off}$, $U_m$)를 잘못 선정하면 위상 지연, 연료 낭비, 수명 감소 등이 발생한다. 그러므로 파라미터가 시스템 성능에 미치는 영향을 분석하고 적절한 파라미터를 선정하여야 한다. 본 논문은 정적 해석을 수행하여 PWPF 파라미터 설계방안을 제시하였으며, 동적 분석 및 시뮬레이션을 수행하여 설계변수에 미치는 상호 영향을 분석하였다.

Development of a Hardware-in-the-loop Simulator for Spacecraft Attitude Control Using Thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Kim, Do-Hee;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권1호
    • /
    • pp.47-58
    • /
    • 2009
  • In this study, a Hardware-In-the-Loop (HIL) simulator using thrusters is developed to validate the spacecraft attitude system. To control the attitude of the simulator, eight cold gas thrusters are aligned with roll, pitch and yaw axis. Also linear actuators are applied to the HIL simulator for automatic mass balancing to compensate the center of mass offset from the center of rotation. The HIL simulator consists of an embedded computer (Onboard PC) for simulator system control, a wireless adapter for wireless network, a rate gyro sensor to measure 3-axis attitude of the simulator, an inclinometer to measure horizontal attitude, and a battery set to supply power for the simulator independently. For the performance test of the HIL simulator, a bang-bang controller and Pulse-Width Pulse-Frequency (PWPF) modulator are evaluated successfully. The maneuver of 68 deg. in yaw axis is tested for the comparison of the both controllers. The settling time of the bang -bang controller is faster than that of the PWPF modulator by six seconds in the experiment. The required fuel of the PWPF modulator is used as much as 51% of bang-bang controller in the experiment. Overall, the HIL simulator is appropriately developed to validate the control algorithms using thrusters.

달 착륙선 지상시험모델의 경로 추종을 위한 추력기 기반 제어기 설계 (Design of Path Tracking Controller Based on Thrusters for the Lunar Lander Demonstrator)

  • 김광진;이정숙;이상철;고상호;류동영;주광혁
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.37-43
    • /
    • 2011
  • Lunar exploration program has been prepared with the aim of launch in the 2020's. As part of it, a lunar lander demonstrator has been developed which is the model for verifying all the system, such as structure, propulsion and control system before launch to deep space. After verifying all the system, the demonstrator will be evaluated by flight test. This paper deals with path tracking controller based on thrusters for the demonstrator. For this, first we derive equations of motion according to the allocation of thrusters and design the path tracking controller. The signal generated from the controller is continuous so PWPF(Pulse-Width Pulse-Frequency) modulator is adopted for generating on/off signal. Finally MATLAB simulation is performed for evaluating the path tracking ability and the final landing velocity.