• Title/Summary/Keyword: PWM power converter

Search Result 1,116, Processing Time 0.029 seconds

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

A Study on the Design of PWM DC/DC Power Converter (PWM DC/DC 전력 컨버터 설계 연구)

  • Lho, Young-Hwan;Hwang, Eui-Sung;Kim, Kang-Han
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.627-633
    • /
    • 2011
  • DC/DC switching power converters are commonly used to generate a regulated DC output voltages with high efficiencies from different DC input sources. The voltage mode DC/DC converter utilizes MOSFET, inductor, and a PWM (pulse-width modulation) controller with oscillator, amplifier, and comparator, etc. to efficiently transfer energy from the input to the output at periodic intervals. The fundamental boost converter and a buck converter containing a switched-mode power supply are studied. In this paper, the electrical characteristics of DC/DC power converters are simulated by program of SPICE. In addition, power efficiency is analyzed based on the specification of each component.

  • PDF

Simple Structure LED-Driving Power Converter with High Power Factor (높은 역률을 가지는 단순 구조 LED 구동 전력컨버터)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.767-773
    • /
    • 2018
  • This paper proposes the simple structure LED-driving power converter with high power factor. As the proposed power converter combines the PFC boost converter and the conventional flyback converter into only one power conversion circuit, it simplifies the structure of LED-driving power converter. Thus the proposed converter is controlled using only one PWM controller IC, and it achieves high power factor, constant output voltage/current and cost-effectiveness. Therefore the proposed converter is suitable for the industry production and utilization of LED-light-system. In this paper, the operation analysis and design example of the proposed converter are explained, briefly. Also experimental results of the prototype that is implemented based on the designed circuit parameters are shown to validate operation characteristics of the proposed converter.

A Study on the Leading Phase Operation of Single Phase PWM Converter Train (단상PWM컨버터 차량의 진상운전에 관한 연구)

  • Kim, Baik
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.357-363
    • /
    • 2012
  • This paper presents a new operation method for the single phase PWM(Pulse Width Modulation) converter train. Recently, the trains adopting the PWM converter have become the majority in the electric locomotives since there are distinct advantages over the predecessors, which can be operated at near unity power factor. However, a slight modification of the control scheme makes this kind of vehicles run in the region of leading power factor. Although this feature seems to be of no significant use by itself, the leading phase operation can improve the voltage profile and the line loss of the feeding systems is decreased by compensating the reactive power loss along the line when it considered together with the feeding systems. This method is even more economical and efficient comparing with the installation of SVC that is mainly used for this purpose since the train can become a movable compensator. With the conditions and some essential formula for the leading phase operation, a new power factor control algorithm has been proposed to implement this scheme. The results of simulation through SIMULINK model show that the proposed method is suitable enough for practical use.

Direct Digital Control of Single-Phase AC/DC PWM Converter System

  • Kim, Young-Chol;Jin, Lihua;Lee, Jin-Mok;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.518-527
    • /
    • 2010
  • This paper presents a new technique for directly designing a linear digital controller for a single-phase pulse width modulation (PWM) converter systems, based on closed-loop identification. The design procedure consists of three steps. First, obtain a digital current controller for the inner loop system by using the error space approach, so that the power factor of the supply is close to one. The outer loop is composed of a voltage controller, a current control loop including a current controller, a PWM converter, and a capacitor. Then, all the components, except the voltage controller, are identified by a discrete-time equivalent linear model, using the closed-loop output error (CLOE) method. Based on this equivalent model, a proper digital voltage controller is then directly designed. It is shown through PSim simulations and experimental results that the proposed method is useful for the practical design of PWM converter controllers.

Harmonic Reduction in Three-Phase Boost Converter with Sixth Order Harmonic Injected PWM (6고조파 주입 PWM을 이용한 3상 승압형 컨버터 고조파저감)

  • 이정호;김재문;이정훈;원충연;김영석;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.176-183
    • /
    • 2000
  • In this paper, sixth order hannonic injected PWM for improving‘ input CWTent distortion of single switch t three phase boost converter is presented. Peliodic sixth order hmmonic ${\gamma}$oltage is inj<:ded in the control circuit t to var${\gamma}$ the duty ratio of the converter switch within one switching cycle. In the result, the input phase c currents are forced to track the input voltage and an 해most unity power factor is obtained. Expelimental r results are verified by converter operating at 400V /6kW with three phase 140V ~220V input and by C02 arc w welding machine which was nonlinear load with 3 $\phi$ 220V input.

  • PDF

Performance Improvement of a Buck Converter using a End-order Space Dithered Sigma-Delta Modulation based Random PWM Switching Scheme (2차 Space Dithered Sigma-Delta Modulation 기반의 Random PWM 스위칭 기법을 이용한 강압형 DC-DC 컨버터의 성능 개선)

  • Kim, Seo-Hyeong;Ju, Seong-Tak;Jung, Hea-Gwang;Lee, Kyo-Beum;Jung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper proposes the 2nd-order SDSDM (Space Dithered Sigma-Delta Modulation) for performance improvement of a buck converter. The PWM (Pulse Width Modulation) has a drawback in that power spectrum tends to be concentrated around the switching frequency. The resulting harmonic spikes cause a EMI(Electromagnetic Interference) and switching loss in semiconductor, etc. The 1st-order SDSDM scheme is a kind of DSDM for reducing these harmonic spikes. In this scheme, a switching frequency is spread through random dither generator placed on input part. In experimental result, the proposed 2nd-order SDSDM is confirmed by applying to a buck converter.

The Control of Single Phase Power Factor PWM converter using Reduced-Order Luenberger Observer (축소차원 Luenberger 관측기를 이용한 단산 PWM 컨버터의 고역률 제어)

  • 양이우;이용근;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.485-488
    • /
    • 1999
  • In this paper, a current control system for single phase PWM AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated source voltage in the controller. The estimation of source voltage is performed by the reduced-order Luenberger observer using actual currents. The estimated source voltage is used to accomplish unity power factor. The proposed method is proved by experiments.

  • PDF

The Control of Single Phase High Power Factor PWM converter using Reduced-order Luenberger Observer (축소차원 Luenberger 관측기를 이용한 단상 PWM 컨버터의 고역율 제어)

  • 양이우;유지용;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.78-82
    • /
    • 1998
  • In this paper, the authors propose a current control system of single phase PWM AC/DC converter without the source voltage sensors. The sinusoidal input current and unity effective power factor are realised based on the estimated source voltage in the controller. The estimations of source voltage are performed based on the reduced-order Luenberger observer using actual currents. The estimated source voltage is used to accomplish unity power factor. The proposed method is proved by simulations

  • PDF

PWM Method of Voltage Type Converters with Large Modulation Ratio (변조율이 큰 전압형 컨버터의 PWM 변조방법)

  • 이사영;오봉환;김봉희;박현준;김길동;이승학;이미영
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.287-290
    • /
    • 1998
  • This paper presents PWM method which modulates two third period only during one cycle of power converter. This method is compared with the conventionl sinusoidal modulation method applying to the power converter with large capacity necessitating low switching frequency. The presented modulation method enables to reduce power semiconductor rating, minimize switching loss, and improve the current wave form.

  • PDF