• Title/Summary/Keyword: PWM converters

Search Result 381, Processing Time 0.027 seconds

A STUDY ON PARALLEL OPERATION OF TWO 3-PHASE PWM CONVERTERS (3상 PWM 컨버터의 병렬운전에 관한 연구)

  • Min, B.G.;Ryu, S.P.;Baek, B.S.;Shin, H.J.;Kim, Y.P.;Kim, D.U.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.156-158
    • /
    • 1998
  • This paper presents parallel operation of two 3-phase PWM converters whose Power and control schemes can be directly applied to a large capacity system. This paper describes power circuit, dc voltage regulation, input power factor correction and balancing load control of two converters. Switching device Is IGBT and CPU of control is 32-bit floating point DSP for real time instantaneous control. Simulations and experimental results for 20kw model conform the validity of proposed schemes.

  • PDF

Effects of the Irradiated Current Mode PWM Controller of DC/DC Power Converter (DC/DC 전력 컨버터의 전류모드 PWM 제어기의 방사선 영향)

  • Lho, Young-Hwan;Hwang, Eui-Sung;Lho, Kyeoung-Su;Phouphanonh, Phouphanonh;Khamphoungeun, Khamphoungeun;Han, Chang-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.685-692
    • /
    • 2011
  • DC/DC switching power converters produce DC output voltages from different DC input sources. The converters can be used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The current mode DC/DC converter is composed of a PWM (pulse width modulation) controller, a MOSFET, and inductor, etc. Pulse width modulation is applied to control and regulate the total output voltage. It is shown that the variation of threshold voltage at MOSFET and the offset voltage increase caused by radiation effects make the PWM pulse unstable. In the PWM operation, the missing pulses, the changes in pulse width, and a change in the period of the output waveform are studied by simulation program with integrated circuit emphasis (SPICE) and experiments.

  • PDF

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

Four Novel PWM Shoot-Through Control Methods for Impedance Source DC-DC Converters

  • Vinnikov, Dmitri;Roasto, Indrek;Liivik, Liisa;Blinov, Andrei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.299-308
    • /
    • 2015
  • This study proposes four novel pulse width modulation (PWM) shoot-through control methods for impedance source (IS) galvanically isolated DC-DC converters. These methods are derived from a PWM control method with shifted shoot-through introduced by the authors in 2012. In contrast to the baseline solution, where the shoot-through states are generated by the simultaneous conduction of all transistors in the inverter bridge, our new approach is based on the shoot-through generation by one inverter leg. The idea is to increase the number of soft-switched transients and, therefore, decrease the dynamic losses of the front-end inverter. All the proposed approaches are experimentally verified through an insulated-gate bipolar transistor-based IS DC-DC converter. Conclusions are drawn in accordance with the results of the switching loss analysis.

Stabilizing Control of DC/DC Buck Converters with Constant Power Loads in Continuous Conduction and Discontinuous Conduction Modes Using Digital Power Alignment Technique

  • Khaligh Alireza;Emadi Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 2006
  • The purpose of this raper is to address the negative impedance instability in DC/DC converters. We present the negative impedance instability of PWM DC/DC converters loaded by constant power loads (CPLs). An approach to design digital controllers for DC/DC converters Is presented. The proposed method, called Power Alignment control technique, is applied to DC/DC step-down choppers operating in continuous conduction or discontinuous conduction modes with CPLs. This approach uses two predefined state variables instead of conventional pulse width modulation (PWM) to regulate the output voltage. A comparator compares actual output voltage with the reference and then switches between the appropriate states. It needs few logic gates and comparators to be implemented thus, making it extremely simple and easy to develop using a low-cost application specific integrated circuit (ASIC) for converters with CPLs. Furthermore, stability of the proposed controllers using the small signal analysis as well as the second theorem of Lyapunov is verified. Finally, simulation and analytical results are presented to describe and verify the proposed technique.

A Study on the Design of Voltage Mode PWM DC/DC Power Converter (전압모드 PWM DC/DC 전력 컨버터 설계연구)

  • Lho, Young-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.411-415
    • /
    • 2011
  • DC/DC switching power converters are commonly used to generate a regulated DC output voltages with high efficiencies from different DC input sources. The voltage mode DC/DC converter utilizes MOSFET (metal-oxide semiconductor field effect transistor), inductor, and a PWM (pulse-width modulation) controller with oscillator, amplifier, and comparator, etc. to efficiently transfer energy from the input to the output at periodic intervals. The fundamental boost converter and a buck converter containing a switched-mode power supply are studied. In this paper, the electrical characteristics of DC/DC power converters are simulated by program of SPICE, and the PWM controller is implemented to check the operation. In addition, power efficiency is analyzed based on the specification of each component.

Single Phase PWM Converters with Active Filter Functions Both on AC-Input and DC-Output Sides

  • MATSUI, Mikihiko;KITANO, Tatsuya
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.258-263
    • /
    • 1998
  • A comparative study of single-phase PWM converters having active filtering functions both on ac-input and dc-output sides have been carried out. Based on the function of the dc-output side active filter, two types of configurations, the RPM (ripple power managing) type and the APM (average power managing) type are compared to show their contrastive characteristics. The prototype system using DSP based control algorithms, i.e. deadbeet current control and voltage sensor-less technique using full-order observer, show the availability of the proposed system.

  • PDF

Parameter Estimation for Digital Current Control of PWM Converters

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.149-152
    • /
    • 1998
  • From the viewpoint of model-based current control, it is indispensable to use the accurate system parameters for the high control performance. This paper adopts the Least-Squares algorithm as a parameter estimation scheme because it has the fast convergence rate and the low sensitivity to noises. In case of the intelligent current controller with delay compensator, the simulation results show that the adopted estimation scheme can be successfully applied to PWM converters and also show the improved control performance in the estimated parameters.

  • PDF

Comparative Analysis of LCL and LLCL Filters for Three-level PWM Converters

  • Alemi, Payam;Le, Quoc Anh;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.283-284
    • /
    • 2014
  • In this paper, a comparative analysis of LCL and LLCL filters connected to three-level T-type PWM converters is presented, in which the filter inductor sizes are investigated in view of total harmonic distortion (THD) in grid phase currents. The analysis results are verified by simulation and experiments.

  • PDF

Direct Duty Ratio Pulse Width Modulation Method for Matrix Converters

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon;Kim, Kyoung-Min;Lee, Buhm;Park, Jun-Hyub
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.660-669
    • /
    • 2008
  • This paper presents a new carrier based pulse-width modulation (PWM) method for matrix converters. By using the concept of average over one switching period, the modulation algorithm and the required equations are derived to synthesize the desired output voltage and to achieve the controlled input power factor. The proposed method uses a continuous carrier and the predetermined duty ratio signals to directly generate the gating signals and, thus, is referred to as "direct duty ratio PWM (DDPWM)". The feasibility and validity of the proposed method were verified by simulation and experiment.