• 제목/요약/키워드: PWM controller

검색결과 712건 처리시간 0.022초

Path Tracking Controller Design and Simulation for Korean Lunar Lander Demonstrator

  • Yang, Sungwook;Son, Jongjun;Lee, Sangchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.102-109
    • /
    • 2015
  • In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using performance measures such as the total impulse and the position error with respect to the desired path.

IP 제어기를 이용한 통신 전원용 3상 PWM 컨버터의 전압 제어 (IP Voltage Controller of Three-phase PWM Converter for Power Supply of Communication System)

  • 신희근;김학원;조관열;지준근
    • 한국산학기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.2722-2728
    • /
    • 2011
  • 대용량 전원장치의 정류기는 입력전류의 고조파를 줄이기 위해, 입력 전류 제어기능을 갖는 3상 PWM 정류기의 적용이 확대되고 있다. 3상 PWM 정류기의 전압제어기는 일반적으로 PI 제어기가 사용되며, 출력 전압의 안정성을 얻고 신뢰성을 확보하기 위하여 전압 제어기는 출력전압의 과도상태에서 오버슈트(Overshoot)를 작게 설계한다. 그러나 부하 변동이 급격한 대용량 통신용 전원 장치에 3상 PWM 정류기가 적용될 경우 빠른 부하 변동에 대한 안정적 전압 응답을 얻기 위하여 보다 넓은 대역폭을 갖도록 전압 제어기를 설계할 필요가 있다. 넓은 대역폭을 갖는 PI 제어기는 과도한 출력전압의 오버슈트가 발생될 수 있으며, 이 과도한 출력전압 오버슈트는 통신용 전원의 안정성을 해칠 수 있다. 본 논문에서는 과도 상태에서 출력전압의 오버슈트를 작게 하기 위하여 IP 제어기를 갖는 3상 PWM 정류기의 전압 제어기를 제안한다. 제안된 전압 제어기는 3상 PWM 정류기의 기동 시와 부하 변동시의 과도 응답특성을 개선될 수 있음을 시뮬레이션 및 실험을 통해 확인하였다.

2개의 입력센서를 갖는 단상 PWM 컨버터용 고조파 및 역률 제어기 (Harmonics and Power Factor Controller for Single-Phase PWM Converter Using Two Input Sensors)

  • 전영수;이경빈;한병문;한후석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권10호
    • /
    • pp.618-624
    • /
    • 2004
  • In this paper, a new controller for a single-phase PWM converter is described, which requires only two input parameters, the dc voltage and the ac current. Detail simulation model with EMTDC(Electro-Magnetic Transient program for DC transmission) including power circuit and controller was developed to verify the operation of proposed controller. The application feasibility of the proposed controller was verified through experimental works with a prototype. The proposed controller has a simple structure in the point of hardware implementation, and shows excellent performance in normal operation as well as in sudden load change.

PWM DC-AC Converter Regulation using a Multi-Loop Single Input Fuzzy PI Controller

  • Ayob, Shahrin Md.;Azli, Naziha Ahmad;Salam, Zainal
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.124-131
    • /
    • 2009
  • This paper presents a PWM dc-ac converter regulation using a Single Input Fuzzy PI Controller (SIFPIC). The SIFPIC is derived from the signed distanced method, which is a simplification of a conventional fuzzy controller. The simplification results in a one-dimensional rule table, that allows its control surface to be approximated by a piecewise linear relationship. The controller multi-loop structure is comprised of an outer voltage and an inner current feedback loop. To verify the performance of the SIFPIC, a low power PWM dc-ac converter prototype is constructed and the proposed control algorithm is implemented. The experimental results show that the SIFPIC performance is comparable to a conventional Fuzzy PI controller, but with a much reduced computation time.

조건부 적분기를 가지는 LQ 제어기를 이용한 3상 PWM 컨버터의 전류제어 (Current Control for Three Phase PWM Converter Using LQ Controller with Conditional Integrator)

  • 김홍성;전윤석;조영준;목형수;최규하;김한성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.345-351
    • /
    • 1997
  • In this paper, controller for PWM converter considering unsymetrical input voltage is designed and current controller using LQ controller with conditional integrator is proposed. And the proposed current controller is compared with other current controller-predictive controller, decoupling PI controller. As simulation results, LQ controller with Conditional Integrator shows the improved performance for DC link voltage regulation through transient test of load variation. And when unsymeritrical input voltage is applied to converter with conventional current controller considering only symetrical input voltage, input current is distorted but it is showed that current controller considering unsymetrical input has robust control characteristics under phase voltage unbalance.

  • PDF

3상 PWM Converter를 위한 정지 좌표계법 Analog 제어기 설계 및 시뮬레이션 (Design and Simulation of analog controller for 3 Phase PWM Converter Based on Stationary Reference Frame)

  • 이영국;노철원;최종률
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.14-20
    • /
    • 1997
  • Due to several advantages of Pulse Width Modulated(PWM) Converter, such as unity power factor with low-harmonics and energy regeneration, PWM converter has been widely used in industrial application. In every application of energy conversion equipment, the design and implementation must be carried out considering performance and cost. High quality with low cost is the best choice for energy conversion equipment. High dc link voltage can reduce inverter and motor side losses and system dimension compare to low dc link voltage. Analog controller can make PWM converter cheaper without considerable degradation of the performance than digital controller. This paper shows the simplified analog controller-for 600V dc link voltage using stationary reference frame control and the simulation results.

  • PDF

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

Direct Digital Control of Single-Phase AC/DC PWM Converter System

  • Kim, Young-Chol;Jin, Lihua;Lee, Jin-Mok;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.518-527
    • /
    • 2010
  • This paper presents a new technique for directly designing a linear digital controller for a single-phase pulse width modulation (PWM) converter systems, based on closed-loop identification. The design procedure consists of three steps. First, obtain a digital current controller for the inner loop system by using the error space approach, so that the power factor of the supply is close to one. The outer loop is composed of a voltage controller, a current control loop including a current controller, a PWM converter, and a capacitor. Then, all the components, except the voltage controller, are identified by a discrete-time equivalent linear model, using the closed-loop output error (CLOE) method. Based on this equivalent model, a proper digital voltage controller is then directly designed. It is shown through PSim simulations and experimental results that the proposed method is useful for the practical design of PWM converter controllers.

3상 전압형 PWM 컨버터의 전압 센서리스 제어 (Voltage Sensorless Control for Three-Phase Voltage Source PWM Converter)

  • 허태원;조광승;김영빈;서정기;조용길;우정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2656-2658
    • /
    • 1999
  • This paper presents a control scheme for a three-phase PWM converter system without any voltage sensors. Two input currents and one load current are measured. In a general PWM converter system, the required AC input and DC output voltage values in order to control the converter are estimated using the differential equations of the converter from the measured input currents and load current values in the switch modes of the converter circuit. The PI controller is used as DC voltage controller and sinusoidal tracking controller which tracks directly AC input current is used as input current controller. The Proposed method is verified by simulations. This paper describes the estimation method and configuration of the controller, and discusses steady state and transient performances of the converter

  • PDF

디지털 제어 방식의 고속 PWM 전류 증폭기의 구현에 관한 연구 (Study on the Implementation of the Digital Controller of High-Speed PWM Current Amplifier)

  • 고덕화;백광렬
    • 제어로봇시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.97-103
    • /
    • 2002
  • This paper deals with a PWM(Pulse Width Modulation) current amplifier using digital controller in order to generate a gradient magnetic field far the MRI(Magnetic Resonance Image) system. Because of tolerance of discrete devices, it is difficult to set accurate values of the control parameters and to make an analog-controlling circuit. However, using digital controller, it is possible to set exact control parameters and to adopt a modern control techniques. It is shown that the digital controller will highly enhance the output current response and it will improve the quality of the MRI.