• Title/Summary/Keyword: PWM AC/AC converter

Search Result 371, Processing Time 0.024 seconds

A Single-Phase Buck AC-AC Power Converter for Custom Power Applications (수용가 전원 응용을 위한 단상 Buck AC-AC 전력 변환기)

  • 강정식;최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.427-430
    • /
    • 2001
  • Computers and automated manufacturing processes in industry are very susceptible to voltage sags and surges. The need for greater power reliability makes the end-users to use the uninterruptible power supply and other electronic power conditioning means to maintain the stable voltage. In this paper, a single-phase buck ac-ac converter for Custom Power Applications is presented. The presented converter uses IGBT's as switching module and maintains the stable voltage through PWM technology in spite of the input voltage sags and load rejections. In this paper, the operation characteristics of the power converter at steady state are illustrated using PSPICE simulations.

  • PDF

New Voltage Sag/Swell Compensator Using Direct Power Conversion Method (직접전력변환 방식을 이용한 새로운 전압 sag/swell 보상기)

  • Cha, Han-Ju;Lee, Dae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.267-269
    • /
    • 2006
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is introduced. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc-link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy to compensate voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method commonly required in the direct power conversion. Simulation results are shown to demonstrate the advantages of the new compensator and PWM strategy.

  • PDF

A Study of AC-DC PWM Full-Bridge Integrated Converter Topologies

  • Gerry, Moschopoulos;Praveen Jain
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • Two AC-DC PWM full-bridge converters that can input current to improve input power factor while performing dc-dc conversion are investigated in this paper. Both converters are simple in that they are similar to the standard PWM full-bridge converter with a diode rectifier/LC low-pass filter input, and both can operate with a simple method of PWM control. In the paper, the operation of the converters is explained and their steady-state characteristics are discussed. The feasibility of the converters and their ability to meet EN61000-3-2 Class D Standards for electrical equipment are shown with results obtained from experimental prototypes. The performance of both converters in terms of dc bus voltage level, input power factor and efficiency is compared and discussed.

  • PDF

An Elimination Method of Harmonics in AC to DC Converter (AC/DC 컨버터의 고조파 제거 방법)

  • 오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.767-775
    • /
    • 2003
  • This paper considers the method of elimination harmonics in AC/DC converters, There are few practical methods to reduce the harmonics in AC/DC converters, particularly in filter design and control strategy. In this paper, a harmonic elimination methods are proposed, which includes hybrid PWM control strategy. These methods achieve precise output control along with the optimum performance simultaneously. The control method in this paper is developed to eliminate a fixed number of harmonics in AC to DC converter. The higher order harmonics can be easily eliminated by using filter proposed in this paper. The validity of these methods is confirmed experimentally.

Characteristics of AC-DC Converter using Multilayer Piezoelectric Transformer (적층형 압전변압기를 이용한 AC-DC 컨버터 특성)

  • Shin, Hyun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1315-1320
    • /
    • 2012
  • In this study, piezoelectric AC-DC converter using ring-dot type multilayer piezoelectric transformer with no anisotropic of polarization was developed. Considering the characteristics of piezoelectric transformer which is very narrow operating frequency range, piezoelectric converter was designed with mixed structure of PFM driving method for feedback control of oscillation frequency and PWM driving method for output control. Maximum power and allowed current of the developed piezoelectric converter showing stable driving with minimum heat was 25W and 900mA, respectively. The output voltage of the piezoelectric converter was controlled by the driving oscillation frequency and showed stable and efficient operating characteristics at the maximum power.

Analysis of Internal Energy Pulsation in MMC System According to Offset Voltage Injection with PWM Methods (PWM 방식을 이용한 옵셋 전압 주입에 따른 MMC 시스템 내부 에너지 맥동 분석)

  • Kim, Jae-Myeong;Jung, Jae-Jung
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1140-1149
    • /
    • 2019
  • In general, there are various pulse width modulation(PWM) methods simply using the offset voltage injection in voltage source converter(VSC). In accordance with the AC side voltage synthesis method with the offset voltage, DC side voltage utilization factor in VSC is changed. Also, this can apply equally to the MMC system. In other words, if the DC side capacity of the high voltage DC(HVDC) transmission system is determined, the maximum reactive power which can be supplied to the AC side can be changed according to the applied output voltage synthesis method with the offset voltage. In this paper, the leg energy pulsation in MMC system according to the AC side output voltage synthesis method with offset voltage which several representative PWM are applied to are mathematically analyzed and compared with each other. Finally, the above results are verified by simulation emulating the 400MVA full-scale MMC system to determine the consistency of the mathematical analysis.

Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device (IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발)

  • Kno Ae-Sook;Kim Tae-Yun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 2005
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, IPM is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the harmonic content is eliminated by the phase shaft between two PWM converters switching phase. VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1,100kVA inverter with four 210kW traction motors.

Single-Phase Z-Source AC/AC Converter with Wide Range Output Voltage Operation

  • Nguyen, Minh-Khai;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.736-747
    • /
    • 2009
  • A new type of single-phase Z-source AC/AC converter based on a single-phase matrix converter is proposed in this paper. The proposed single-phase Z-source AC/AC converter has unique features; namely that the output voltage can be bucked and in-phase/out-of-phase with the input voltage; that the output voltage can be boosted and in-phase/out-of-phase with the input voltage. The converter employs a safe-commutation strategy to conduct along a continuous current path, which results in the elimination of voltage spikes on switches without the need for a snubber circuit. The operating principles of the proposed single-phase Z-source AC/AC converter are described, and a circuit analysis is provided. To verify the performance of the proposed converter, a laboratory prototype based on a TMS320F2812 DSP was constructed. The simulation and the experimental results verified that the output voltage can be bucked-boosted and in-phase with the input voltage, and that the output voltage can be bucked-boosted and out-of-phase with the input voltage.

Three Phase PWM AC/DC Converter with Leading Current Compensation Control (AC Filter Capacitor 에 따른 진상 전류 보상 회로를 갖는 $3{\phi}$ PWM AC/DC 컨버터)

  • Kim, E.S.;Joe, K.Y.;Suh, K.Y.;Lee, H.W.;Kwon, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.268-270
    • /
    • 1995
  • This paper proposes a novel PWM technique for a three phase current fad type converters. A minor loop compensation method is introduced to compensate leading current and to minimize input line current (Iu) distortion resulting from the resonance between AC filter capacitor and source inductance of power system. This PWM converter has excellent characterics as next. The control system is simply designed, and the operation with unity power factor can be easily obtained by automatic compensating the leading current of the filter circuit. Also. the three phase sinusoidal input current can be obtained.

  • PDF

New DC/AC Soft Switched PWM Converter Having a DC-Link Commutation Circuit (직류측에 Commutation 회로를 갖는 영전압 스위칭 PWM 인버터)

  • Chung, J.H.;Park, S.S.;Goo, T.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1158-1160
    • /
    • 1992
  • A new dc/ac soft switched PWM convert having a dc-link commutation circuit is proposed. The commutation circuit implemented by utilizing a series resonant circuit while preparing for zero voltage switching of primary inverter. The converter provides both variable pulse width and position which is fundamentally different than converters. In this paper, the operating principles, design and control considerations analysis of a such a soft switched converter is analyzed.

  • PDF