• Title/Summary/Keyword: PWM 방법

Search Result 410, Processing Time 0.024 seconds

A Study on Parallel Operation of PWM Inverters for High Speed and High Power Motor Drive System (초고속 및 대용량 전동기 구동을 위한 PWM 인버터 병렬 운전에 관한 연구)

  • Cho, Un-Kwan;Yim, Jung-Sik;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.244-251
    • /
    • 2010
  • High speed motors have been widely used in industries to reduce system size and improve power conversion efficiency. However, the high speed motors sometimes suffer from core losses caused by PWM current ripple; noting that the phase inductance, $L_s$, of high speed motor is smaller than that of ordinary motors. In the proposed topology, three PWM inverters are connected in parallel through nine coupled inductors. Compared to the PWM current ripple of the conventional single inverter system, that of the proposed scheme can be conspicuously reduced without the voltage drop at the inductors. In this paper a theoretical analysis of the output voltage of the proposed topology is presented, and then the validity of the proposed method is verified by experimental results.

The Carrier-based PWM Method for Voltage Balance of Flying Capacitor Multi-bevel Inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 위한 캐리어 비교방식의 펄스폭변조기법)

  • 이상길;강대욱;이요한;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.65-73
    • /
    • 2002
  • This paper proposes a new carrier-based PWM method to solve the most serious problem of flying capacitor multi-level inverter that is the unbalance of capacitor voltages. The voltage unbalance occurs due to the difference of each capacitor's charging and discharging time applied to Flying Capacitor Inverter. New solution controls the variation of capacitor voltages into the mean '0'during some period by means of new carriers using the leg voltage redundancy in the flying capacitor inverter. The solution can be easily expanded to the multi-level inverter. The leg voltage redundancy in the new method makes the switching loss of device equals to the conduction loss of device. This paper will examine the unbalance of capacitor voltage and the conventional theory of self-balance using Phase-shifted carrier. And then the new method that is suitable to the flying capacitor inverter will be explained.

PWM Method with Low d-axis Current Ripple for reducing Input Current THD at Light Loads in Three Phase PWM Rectifier (3상 PWM 정류기의 경부하시 입력전류 THD 저감을 위한 d축 전류리플 저감 PWM 방법)

  • Jin, Yong-Sin;Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.478-485
    • /
    • 2012
  • In this paper, a new PWM method is proposed to reduce the input current harmonics of 3 phase PWM rectifier. In the conventional carrier comparison PWM method, a triangular wave is generally used as the carrier wave. However, the large d-axis current ripple by the triangle carrier wave may be a source of large input current THD(Total Harmonic Distortion). In this paper, a new carrier comparison PWM method with saw tooth wave is proposed. Depending on the sector where the voltage command vector places, one of the rising or falling saw tooth wave is selected. To reduce the switching losses of the saw tooth carrier PWM, the discontinuous PWM is also presented. The proposed PWM method can reduce the d-axis current ripple as well as the switching losses. The performance of the conventional and proposed PWM methods is verified by the simulation and experimental results.

Realization of a New PWM Inverter Using Walsh Series (왈쉬 급수를 이용한 새로운 PWM 인버터의 구현)

  • Joe, Jun-Ik;Chon, Byoung-Sil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.124-129
    • /
    • 1990
  • This paper describes a new method to eliminate some selected harmonics (5,7,11) in PWM waveforms using Walsh and related orthogonal functions. Previous analyses of PWM waveforms are based on the nonlinear equations requiring iterative solution methods which are not practical in real-time systems. In addition, synthesis of low harmonics waveform at high power system is not easy to implement with power electronic hardware. The goal of this paper is to achieve the harmonics elimination in a PWM waveform by replacing the nonlinear equations in Fourier analysis with linear algebraic equations resulting from the use of orthogonal Walsh equation. This paper also describes how to synthesize low ordered harmonic waveforms with practical power electronic hardware. Walsh and Radmacher functions are easily manipulated by Harmuth's array generator, and those algorithms are accurate, computationally efficient and faster than algorithm based on Fourier analysis. In addition, this method is simulated to synthesize periodic PWM waveforms. From the experi-mental results, it is shown that single-phase PWM waveform are identified with the proposed method. And these methods are also extended to three-phase PWM waveforms in this paper.

  • PDF

Carrier Comparison PWM for Voltage Control of Vienna Rectifier (비엔나 정류기의 전압제어를 위한 반송파 비교 PWM)

  • Yoon, Byung-Chul;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4561-4568
    • /
    • 2011
  • In this paper, carrier comparison PWM method for voltage control of Vienna rectifier is discussed. In general, in industrial and communications applications, the two-level rectifier is used. However, this two-level rectifier has the limit of high THD and low efficiency. So, the studies of three-level rectifier has been carried out so far, and the Vienna rectifier circuit is the representative. The space vector pulse width modulation(SVPWM) method is generally used for Vienna rectifier, in which voltage vectors and duration time are calculated from the voltage reference. However, this method require very sophisticated and complex calculations, so realizing this method by software is very difficult. To overcome this disadvantage, simple carrier comparison PWM method for Vienna rectifier is proposed which is modified from the carrier comparison method for 3 level inverter. Furthermore, to verify the usefulness of the Vienna rectifier carrier comparison PWM the simulation and experiment are carried out.

Steady-State Performance Improvement of Single-Phase PWM Inverters Using PLL Technique (PLL 기법을 이용한 단상 PWM 인버터의 정상상태 성능개선)

  • 정세교;이대식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.356-363
    • /
    • 2004
  • This paper presents a precision voltage control technique of a single phase PWM inverter for a constant voltage and constant frequency(CVCF) applications. The proposed control scheme employs an additional phase-locked loop(PLL) compensator which is constructed using the output capacitor voltage and current. The computer simulation and experiment are carried out for the actual single-phase PWM inverter and it is well demonstrated from these results that the steady-state performance and total harmonic distortion(THD) are remarkably improved by employing the proposed technique.

A Study On The Load Sharing PWM Method For Multi-level Converter (멀티레벨 PWM 컨버터의 부하분담 PWM 방식 연구)

  • Ahn, Joonseon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.529-534
    • /
    • 2017
  • In this paper, the implementation of proposed Automatic Load Balanced (ALB) PWM generation method is discussed. The conventional PWM generation method for cascade type H-bridge PWM converter causes the unbalance between each H-bridge converter, therefore the complex redundancy is required for the balancing of switching load of each converter, it consumes more computing power of controller. The ALB PWM method needs no additional switching redundancy for balancing, this paper discusses the implementation of ALB-PWM.

Optimal Control of a Three-Phase Voltage-Source PWM Converter with an Expanded Operation Region (확장된 동작 영역을 갖는 3상 전압원 PWM 컨버터의 최적 제어)

  • 민동기;안성찬;현동석;최종률
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.156-164
    • /
    • 1998
  • The operation regions of a three-phase(3Ø) voltage-source(VS) PWM converter are classified in the current vector plane of the synchronous reference frame and their characteristics are explained. In the the power-factor decreasing region, the current control with unity power-factor can not give satisfactory performance to the given load because of the distortion of input current and the ripples and the steady-state errors in DC link voltage. In this paper, the derivation of the optimal current vector is proposed to solve these problems. With this, the input current can be controlled sinusoidally with available maximum power factor and the DC link voltage be the given load, resulting the expansion of the operation region of the 3Ø VS PWM converter. The validity of the proposed control method is proved by the experimental results.

Instantaneous Current PR Control Method of Single-phase PWM Converter for High Speed Train (고속전철용 단상 PWM 컨버터의 순시 전류 PR 제어 기법)

  • Lee, Heon-Su;Cho, Sung-Joon;Jeong, Man-Kyu;Lee, Kwang-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.231-232
    • /
    • 2014
  • 본 논문은 특정 주파수 대역에서 큰 이득을 갖는 PR 제어기를 이용한 단상 PWM 컨버터의 전류 제어 기법에 대해 제안한다. 고속전철 주전력변환장치는 단상 PWM 컨버터와 3상 인버터로 구성되며, 단상 PWM 컨버터는 단위 역률 제어와 가선전류 고조파 저감을 위하여 빠른 동특성을 갖는 순시 전류 제어 방법이 필요하다. 일반적으로 순시 전류 제어를 위해서 사용되는 동기 좌표계 PI 제어기는 연산 량이 증가하고, 정지 좌표계 PI 제어기는 정상상태 오차가 발생하는 단점이 있다. 본 논문에서는 이러한 단점을 보완할 수 있는 순시 전류 제어 방법을 시뮬레이션과 시험을 통하여 검증하였다.

  • PDF

A Study on PWM Method for Cascaded Multilevel Inverter (Cascaded 멀티레벨 인버터의 PWM 방법에 관한 연구)

  • Lee, Heon-Su;Park, Young-Min;Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.79-80
    • /
    • 2015
  • 멀티레벨 인버터에 널리 사용되는 Phase Shifted PWM은 셀 간의 동일한 전력 분배가 가능하나 각 셀 carrier의 위상차이로 인해 무부하 운전시 특정 셀에 회생이 발생하고, 지령 전압과 실제 전압의 위상차가 발생하는 단점이 있다. Level Shifted PWM을 통해 이와 같은 단점을 보완할 수 있으나, 각 셀의 스위칭 패턴이 모두 달라 전력 분배가 동일하게 이루어 지지 않는 문제가 있다. 본 논문에서는 기존의 Level Shifted PWM 방법을 개선하여 각 셀의 스위칭 패턴을 순환시켜 셀 간 동일한 전력분배가 이루어지도록 하였고, 시뮬레이션을 통해 이를 검증하였다.

  • PDF