• Title/Summary/Keyword: PVD(Physical Vapor Deposition)

Search Result 98, Processing Time 0.036 seconds

Bonding And Anti-bonding Nature of Magnetic Semiconductor Thin Film of Fe(TCNQ:tetracyanoquinodimethane)

  • Jo, Junhyeon;Jin, Mi-jin;Park, Jungmin;Modepalli, Vijayakumar;Yoo, Jung-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.294-294
    • /
    • 2014
  • Developing magnetic thin films with desirable physical properties is a key step to promote research in spintronics. Organic-based magnetic material is a relatively new kind of materials which has magnetic properties in a molecular and microscopic level. These materials have been constructed by the coordination between 3d transition metal and organic materials producing long-range magnetic orders with a relatively high transition temperature. However, these materials were mostly synthesized as a form of powder, which is difficult to study for their physical properties as well as apply for electronic/spintronic devices. In this study, we have employed physical vapor deposition (PVD) to develop a new organic-based hybrid magnetic film that is achieved by the coordination of Fe and tetracyanoquinodimethane (TCNQ). The IR spectra of the grown film show modified CN vibration modes in TCNQ, which suggest a strong bonding between Fe and TCNQ. The thin film has both ferromagnetic and semiconducting behaviors, which is suitable for molecular spintronic applications. The high resolution photoemission (HRPES) spectra also show shift of 1s peak point of nitrogen and the carbon 1s peaks display traces of charge transfer from Fe to TCNQ as well as shake-up features, which suggest strong bonding and anti-bonding nature of coordination between Fe and TCNQ.

  • PDF

입자침전법을 이용한 광도전체 필름의 X선 반응 특성에 관한 연구

  • Choe, Chi-Won;Gang, Sang-Sik;Jo, Seong-Ho;Gwon, Cheol;Nam, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.176-176
    • /
    • 2007
  • Flat-panel direct conversion detectors used in compound substance of semiconductor are being studied for digital x-ray imaging. Recently, such detectors are deposited by physical vapor deposition(PVD) generally. But, most of materials (HgI2, PbI2, TlBr, PbO) deposited by PVD have shown difficult fabrication and instability for large area x-ray imaging. Consequently, in this paper, we propose applicable potentialities for screen printing method that is coated on a substrate easily. It is compared to electrical properties among semiconductors such as $HgI_2$, $PbI_2$, PbO, HgBrI, InI, and $TlPbI_3$ under investigation for direct conversion detectors. Each film detector consists of an ~25 to $35\;{\mu}m$ thick layer of semiconductor and was coated onto the substrate. Substrates of $2cm{\times}2cm$ have been used to evaluate performance of semiconductor radiation detectors. Dark current, sensitivity and physics properties were measured. Leakage current of $HgI_2$ as low as $9pA/mm^2$ at the operation bias voltage of ${\sim}1V/{\mu}m$ was observed. Such a value is not better than PVD process, but it is easy to be fabricated in high quality for large area x-ray Imaging. Our future efforts will concentrate on optimization of growth of film thickness that is coated onto a-Si TFT array.

  • PDF

Variations in Tribological Characteristics of SM45C by PVD Coating and Thin Films (SM45C재의 PVD코팅과 필름에 의한 트라이볼러지 특성)

  • Shim, Hyun-Bo;Suh, Chang-Min;Kim, Jong-Hyoung;Suh, Min-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.502-510
    • /
    • 2018
  • In order to accumulate data to lower the friction coefficient of a press mold, tribological tests were performed before and after coating SM45C with a PVC/PO film and plasma coating (CrN, concept). The ultrasonic nanocrystal surface modification (UNSM)-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those of untreated materials. A comparison of the weight change before and after the tribological test with the CrN and the concept coating material and that of the untreated material showed that the wear loss of the concept coating material and P-UNSM treated material (that is, the UNSM treated material treated with the concept coating) showed a tendency to decrease by approximately 55-75%. Concept 100N had a lower friction coefficient of about 0.6, and P-UNSM-30-100N showed almost the same curve as concept 100N and had a low coefficient of friction of about 0.6. The concept multilayer coating had a thickness of $5.32{\mu}m$. In the beginning, the coefficient of friction decreased because of the plasma coating, but it started to increase from about 250-300 s. After about 350 s, the coefficient of friction tended to approach the friction coefficient of the SM45C base metal. The SGV-280F film-attached test specimen was slightly pushed back and forth, but the SM45C base material was not exposed due to abrasion. The friction coefficient was 0.22, which was the lowest, and the tribological property was the best in this study.

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • Han, Dong-Seok;Mun, Dae-Yong;Gwon, Tae-Seok;Kim, Ung-Seon;Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

하부전극 물질에 따른 CdTe박막 증착과 그에 따른 전기적 특성 평가

  • Kim, Dae-Guk;Sin, Jeong-Uk;Lee, Yeong-Gyu;Kim, Seong-Heon;Lee, Geon-Hwan;Nam, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.327-328
    • /
    • 2012
  • 의료분야의 진단 방사선 장비는 초기의 필름방식 및 카세트에서 진보되어 현재는 디지털방식의 DR (Digital Radiography)이 널리 사용되며 이에 관한 연구개발이 활발히 진행 되고 있다. DR은 일반적으로 직접방식과 간접방식으로 나눌 수 있다. 직접방식의 원리는 X선을 흡수하면 전기적 신호를 발생 시키는 광도전체(Photoconductor)를 사용하여 광도전체 양단 전극에 전압을 인가하여 전기장을 유도한 가운데, X선을 조사하면 광도전체 내부에서 전자-전공쌍(Electron-hole pair)이 생성된다. 이것은 양단에 유도된 전기장의 영향으로 전자는 +극으로, 전공은 -극으로 이동하여 아래에 위치한 하부기판을 통하여 이미지로 변조된다. 간접방식은 X선을 흡수하면 가시광선으로 전환하는 형광체(Scintillator)를 사용하여 조사된 X선을 형광체에서 가시광선으로 전환하고, 이를 Photodiode와 같은 광변환소자로 전기적 신호로 변환하여 방사선을 검출하는 방식을 말한다. 본 연구에서는 직접방식에서 이용되는 광도전체 중 흡수효율이 높고 Mobility가 뛰어난 CdTe를 선정하여 PVD (Physical vapor deposition)방식으로 300 m의 두께를 목표로 하여 증착을 진행하였다. Chamber의 진공도가 $2.5{\times}10^{-2}$ Torr로 도달 시점부터, Substrate와 Boat에 열을 가하였다. Substrate온도는 $350^{\circ}C$, Boat온도는 $300^{\circ}C$도로 설정하여 11시간 동안 진행하였다. Substrate온도는 $303^{\circ}C$, Boat온도는 $297^{\circ}C$도부터 증착이 시작되어 선형적인 증가세 추이를 나타내어 Substrate 및 Boat온도가 설정 값에 도달 하였을 때, $25{\sim}34.4{\AA}/s$ 증착율을 나타내었다. 하부전극의 물질에 따른 CdTe증착 효율성 평가를 진행한 후, 그에 따른 전기적 특성을 알아보았다. 하부전극의 물질로는 ITO (Indium Tin Oxide), Parylene이 코팅 된 ITO, Au, Ag를 사용하였다. 하부전극의 물질 상단에 Thermal Evaporation System을 사용하여 CdTe를 증착한 후, Cdte 상단에 Au를 증착 시켜 민감도(Sensitivity)와 암전류(Dark current)를 측정하였다. 증착 결과 ITO와 Ag상단에 증착시킨 CdTe박막은 박리가 되었고, Au와 Parylene이 코팅 된 ITO에는 CdTe박막이 안정적이게 형성이 되었다. 이 두 샘플에 대하여 동일한 조건으로 민감도와 암전류를 측정 시, Parylene이 코팅된 ITO를 하부전극으로 사용한 CdTe박막은 0.1021 pA/$cm^2$의 암전류와 1.027 pC/$cm^2$의 민감도를 나타낸 반면, Au를 하부전극으로 사용한 CdTe박막은 0.0381 pA/$cm^2$의 암전류와 1.214 pC/$cm^2$의 민감도를 나타내어 Parylene이 코팅된 ITO보다 우수한 전기적 특성을 나타내었다. 따라서 Au는 CdTe박막 증착 시, 하부전극 기판으로서 뛰어난 특성을 나타내는 것을 알 수 있었다.

  • PDF

The study of X-ray detection characteristic and fabrication photoconductor film thickness for Screen printing method (Screen printing method로 제작된 의료용 광도전체 필름의 Tickness의 따른 X선 검출 특성 평가)

  • Lee, Y.K.;Yon, M.S.;KIM, D.H.;Chun, S.L.;Jung, B.D.;Gang, Sang-Sik;Park, J.G.;Mun, C.W.;Nam, S.H.
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.2
    • /
    • pp.11-16
    • /
    • 2009
  • Mercury Iodide as good sensitivity at radiation and has an easy peculiarity that operates at low voltage for other photoconductors(a-Se, a-Si, Ge, etc) Based on this characteristic, we studied about an efficiency of the digital x-ray detector in acccordance with the thickness of photoconductor. To solve the problem that is difficult to make a large area film using PVD(Physical Vapor Deposition)method, we used a PIB(Particle In Binder)method. To make a binder paste, we used a PVB(Polyvinylbutyral) as a binder and a DGME(Diethylene Glycol Monobutyl Ether), DGMEA(Diethylene Glycol Monobutyl Ether Acetate) as a solvent. Using this binder paste, we made a polycrystal mercury iodide film that has an each thickness. To evaluate the electrical properties of this films, we measured a darkcurrent, sensitivity and SNR(Signal to Noise Ratio). Mercury iodide film of the 200um thickness has good electrical properties as a result of the measurement. From this result there is a good chance that replace the existing a-Se(Amnorphous seleinum; a-se) with the mercury iodide.

  • PDF

A Review on Ultrathin Ceramic-Coated Separators for Lithium Secondary Batteries using Deposition Processes (증착 기법을 이용한 리튬이차전지용 초박막 세라믹 코팅 분리막 기술)

  • Kim, Ucheol;Roh, Youngjoon;Choi, Seungyeop;Dzakpasu, Cyril Bubu;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.134-153
    • /
    • 2022
  • Regardless of a trade-off relationship between energy density and safety, it is essential to improve both properties for future lithium secondary batteries. Especially, to improve the energy density of batteries further, not only thickness but also weight of separators including ceramic coating layers should be reduced continuously apart from the development of high-capacity electrode active materials. For this purpose, an attempt to replace conventional slurry coating methods with a deposition one has attracted much attention for securing comparable thermal stability while minimizing the thickness and weight of ceramic coating layer in the separator. This review introduces state-of-the-art technology on ceramic-coated separators (CCSs) manufactured by the deposition method. There are three representative processes to form a ceramic coating layer as follows: chemical vapor deposition (CVD), atomic layer deposition (ALD), and physical vapor deposition (PVD). Herein, we summarized the principle and advantages/disadvantages of each deposition method. Furthermore, each CCS was analyzed and compared in terms of its mechanical and thermal properties, air permeability, ionic conductivity, and electrochemical performance.

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF

Electrical Properties of Two-dimensional Electron Gas at the Interface of LaAlO3/SrTiO3 by a Solution-based Process (용액 공정을 통해 제조된 LaAlO3/SrTiO3 계면에서의 이차원 전자 가스의 전기적 특성)

  • Kyunghee Ryu;Sanghyeok Ryou;Hyeonji Cho;Hyunsoo Ahn;Jong Hoon Jung;Hyungwoo Lee;Jung-Woo Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2024
  • The discovery of a two-dimensional electron gas (2DEG) at the interface of LaAlO3 (LAO) and SrTiO3 (STO) substrates has sparked significant interest, providing a foundation for cutting-edge research in electronic devices based on complex oxide heterostructures. However, conventional methods for producing LAO thin films, typically employing techniques like pulsed laser deposition (PLD) within physical vapor deposition (PVD), are associated with high costs and challenges in precisely controlling the La and Al composition within LAO. In this study, we adopted a cost-effective alternative approach-solution-based processing-to fabricate LAO thin films and investigated their electrical properties. By adjusting the concentration of the precursor solution, we varied the thickness of LAO films from 2 to 65 nm and determined the sheet resistance and carrier density for each thickness. After vacuum annealing, the sheet resistance of the conductive channel ranged from 0.015 to 0.020 Ω·s-1, indicating that electron conduction occurs not only at the LAO/STO interface but also into the STO bulk region, consistent with previous studies. These findings demonstrate the successful formation and control of 2DEG through solution-based processing, offering the potential to reduce process costs and broaden the scope of applications in electronic device manufacturing.

Digital X-ray Detector에 적용을 위한 Polycrystalline CdTe 구조에 따른 전기적 신호 연구

  • Kim, Jin-Seon;O, Gyeong-Min;Jo, Gyu-Seok;Song, Yong-Geun;Hong, Ju-Yeon;Heo, Seung-Uk;Nam, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.484-484
    • /
    • 2013
  • 기존 진단용 Digital X-ray Detector이 직접방식에서는 a-Se (Amorphous Selenium)이 대중화되었지만 고전압을 인가하여야한다는 점과 그로 인한 물질 자체의 Life time 감소 등 여러 단점들 때문에 기타 후보물질들로 HgI2, PbI2, PbO, CdTe, CdZnTe가 연구 되고 있다. 이러한 후보 물질들 중 본 연구에서는 PVD (Physical Vapor Deposition)방식을 이용하여 Polycrystalline CdTe 박막을 제작하고 특성 향상을 위해 유전물질을 Passive layer와 Protect layer로써 증착하였다. 또한 유전체층의 위치에 따른 특성 분석을 위해 제작된 박막은 FE-SEM (Field Emission Scanning Electron Microscope), XRD (X-ray Diffraction)을 통해 구조적인 특성을 확인하였다. 그리고 입사되는 X-ray 선량에 의해 생성되는 전기적 특성을 분석하였다, 그 결과 박막의 Grain Size는 약 $5{\mu}M$이며 (111)방향의 주 peak를 띄는 Poly CdTe형태로 증착된 것을 확인하였다. 전기적인 신호 결과 Passive layer와 Protect layer를 증착한 박막 모두 Darkcurrent가 감소된 것을 확인하였다. 또한 Sensitivity 측정 결과 Passive layer를 삽입한 경우 신호 값이 감소하였으며 Protect layer를 삽입한 경우 신호 값의 변화가 일어나지 않았다. 그러므로 Protect layer를 등착한 박막의 경우 SNR이 현저히 높아지는 결과를 낳았다.

  • PDF