• Title/Summary/Keyword: PVC membrane

Search Result 169, Processing Time 0.031 seconds

A New Fe (III)-Selective Membrane Electrode Based on Fe (II) Phthalocyanine

  • Ozer, Tugba;Isildak, Ibrahim
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.321-328
    • /
    • 2019
  • A new miniaturized all solid-state contact Fe (III)-selective PVC membrane electrode based on Fe (II) phthalocyanine as a neutral carrier was described. The effects of the membrane composition and foreign ions on the electrode performance was investigated. The best performance was obtained with a membrane containing 32% poly (vinyl chloride), 64% dioctylsebacate, 3% Fe (II) phthalocyanine, and 1% potassium tetrakis (p-chlorophenyl) borate. The electrode showed near Nernstian response of $26.04{\pm}0.95mV/decade$ over the wide linear concentration range $1.0{\times}10^{-6}$ to $1.0{\times}10^{-1}M$, and a very low limit of detection $1.8{\pm}0.5{\times}10^{-7}M$. The potentiometric response of the developed electrode was independent at pH 3.5-5.7. The lifetime of the electrode was approximately 3 months and the response time was very short (< 7 s). It exhibited excellent selectivity towards Fe (III) over various cations. The miniaturized all solid-state contact Fe (III)-selective membrane electrode was successfully applied as an indicator electrode for the potentiometric titration of $1.0{\times}10^{-3}M$ Fe (III) ions with a $1.0{\times}10^{-2}M$ EDTA and the direct determination of Fe (III) ions in real water samples.

Determination of Basic Drugs with Ion-Selective Membrane Electrodes Using Ion-Exchanger (이온교환체 이온선택성 전극을 이용한 염기성의약품 정량)

  • 이지연;정문모;허문회;김은정;안문규
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.289-293
    • /
    • 1999
  • Many poly (vinyl chloride : PVC) membrane electrodes were investigated for the determination of basic drugs, chlorpromazine, amitriptyline, nortriptyline, etc. These electrodes are based on the use of the ion-association complexes of the basic drugs with eriochrome cyanine R, chromoxane cyanine, chrome azurol S and picric acid as ion-exchange sites in a plasticized PVC matrix. All ion-exchangers except picrate complex were not proper for use, because those complexes in plasticized membrane were excluded into aqueous working solution. These drug electrodes show excellent Nernstian responses in the concentration ranges $10^{-2}~10^{-6}$ mol $dm^{-3}$. Their selectivity with respect to each other, as well as their work-able pH range have been investigated. The major advantages of the proposed methods are their simplicity and speed.

  • PDF

Polymeric Membrane Cesium-Selective Electrodes Based on Quadruply-bridged Calix[6]arenes

  • Choe, Eun Mi;O, Hye Jin;Go, Seung Hwa;Choe, Yong Guk;Nam, Gye Chun;Jeon, Seung Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1345-1349
    • /
    • 2001
  • New quadruply-bridged calix[6]arenes (I-V) have been studied as cesium selective ionophores in poly(vinyl chloride) (PVC) membrane electrodes. PVC membranes were prepared with dioctyl sebacate (DOS) or 2-nitrophenyl octyl ether (o-NPOE) as the sol vent mediator and potassium tetrakis(p-chlorophenyl)borate as the lipophilic salt additive. These ionophores produced electrodes with near-Nernstian slope. The selectivity coefficients for cesium ion with respect to alkali, alkaline earth and ammonium ions have been determined. The lowest detection limit (logaCs+ = -6.3) and the higher selectivity coefficient (logkpotCs+,Rb+ = -2.1 by SSM, -2.3 by FIM for calix[6]arene I) for Cs+ have been obtained for membranes containing quadruply-bridged calix[6]arenes (I, Ⅱ, Ⅲ), which have no para t-butyl substituents on the bridging benzene ring.

Potentiometric Characteristics of Ion-Selective Electrodes Based on Upper-Rim Calix[4]crown Neutral Carrier

  • 강유라;오현준;이경문;차근식;남학현;백경수;임혜재
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.207-211
    • /
    • 1998
  • Potentiometric characteristics of DOS plasticized PVC-based membranes containing upper-rim calix[4]crown neutral carrier to various metal cations and protonated alkylamines have been examined. Although the calix[4]crown-based membrane electrodes exhibited substantial emf responses to alkali and alkaline earth metal cations, their high detection limits (- log[Cs+]=4.5) and sub-Nernstian response slopes (48 mV/pCs+) to the most selective cation, cesium, indicate that the metal cation complexing ability of calix[4]crown is much weaker than that of macrocyclic crown ethers. However, the calix[4]crown-based membrane electrodes exhibited near-Nernstian response slopes (56 mV/decade for hexylNH3+) with low detection limits (log[hexylNH3+]= - 6.7) to most alkylammonium ions compared to those of blank (DOS plasticized PVC membrane with no ionophore) or crown ether-based membranes. While the selectivity patterns of blank and crown ether-based membranes are determined primarily by the lipophilicity of alkylammonium ions, the membranes doped with calix[4]crown ionophore could effectively discriminate the steric shapes of nonpolar alkyl groups of alkylammonium ions.

Sol-Gel Encapsulation as Matrix for Potentiometric Nitrite-Selective Membranes Doped with Chloro (5, 10, 15, 20-Tetraphenylporphyrinato) Cobalt (III)

  • Zhou, Hao;Meyerhoff, Mark E.;Bi, Kai-Shun;Park, Sung-Bae
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2009
  • Organic-inorganic hybrid sol-gel matrices were used as hosts for chloro (5, 10, 15, 20-tetraphenylporphyrinato) cobalt (III) (Co[TPP]Cl), a known ionophore for nitrite. The sol-gel precursor was prepared by the reaction of (3-isocyanopropyl) triethoxysilane with 1,4-butanediol. An appropriate amount of the anion-exchanger, tridodecylmethylammonium chloride (TDMAC) and the plasticizer, tributylphosphate (DBP) were used as membrane additives. On mixing with an acidic catalyst, the sol-state precursors slowly gelled, yielding a membrane in which the active components, Co[TPP]Cl and TDMAC, were encapsulated. The performances of the sol-gel membrane-based electrodes were compared to those of Co[TPP]Cl-based poly(vinyl chloride) (PVC) membrane electrodes. Membranes with a molar ratio of Co[TPP]Cl: TDMAC (1 : 0.1) showed reasonable response slopes toward nitrite. The response slopes were typically 53 mV/decade between $10^{-5.4}$ and $10^{-1.0}\;M$. Selectivities toward nitrite over hydrophilic and small anions such as chloride were somewhat inferior to those observed with PVC-based membranes, but selectivities over lipophilic anions were quite similar. Reduced asymmetry potentials due to protein adsorption were found to occur with the sol-gel matrix relative to PVC-based films when the sensors were employed as a detector in flow-through configuration.

Study on manufacturing mechanism of functional carbon membrane (기능성 카본막의 제조 Mechanism에 관한 연구)

  • Bae, Sang-Dae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.211-216
    • /
    • 2018
  • Separation technology combining adsorption and membrane is expected to be applied in many fields such as water treatment. In this fusion technique, a functional carbon membrane having a carbon whisker grown on the surface of the membrane was developed to inhibit membrane fouling, which is a problem in the membrane separation process. In this study, to elucidate the mechanism of manufacturing the functional carbon membrane, the membrane was pretreated with the polymer latex of each mixing ratio and the membrane was formed by the CVD (Chemical Vapor Deposition) method. The membrane was analyzed by scanning electron microscope (SEM), CHN analyzer (Elemental Analyzer), and X-ray diffraction (XRD). As a result, the diameter and density of carbon whiskers were higher in case of polyvinyl di-chloride (PVdC): polyvinyl chloride (PVC) = 4.5: 55. It seems possible to control the diameter and density of the carbon whiskers according to the hydrogen content of the polymer latex.

Potentiometric Response of Chitin - based Membrane Electrode to various Metal cations (키틴 막 전극의 양이온에 대한 감응 연구)

  • Choi, Bun-Hong;Yun, Young-Ja
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.235-242
    • /
    • 1998
  • Membrane electrode based on chitin(po1y-[$1{\rightarrow}4$]-${\beta}$-N-acetyl-D-glucosamine) was prepared by mixing uniformly grounded of chitin (100 mesh) with PVC and DOS. We investigated the potential response of chitin membrane electrode to metal ions. It was observed that the response slopes for $Cd^{2+}$(34.9 mV/decade) and $Cu^{2+}$(34.0 mV/decade) were larger than those for other ions in pH 4 acetate buffer. The potentiometric response of chitin electrode to varying pH was nearly constant in the pH range of 2~12.

  • PDF

UO22+ Ion-Selective Membrane Electrode Based on a Naphthol-Derivative Schiff's Base 2,2'-[1,2-Ethandiyl bis(nitriloethylidene)]bis(1-naphthalene)

  • Shamsipur, Mojtaba;Saeidi, Mahboubeh;Yari, Abdullah;Yaganeh-Faal, Ali;Mashhadizadeh, Mohammad Hossein;Azimi, Gholamhasan;Naeimi, Hossein;Sharghi, Hashem
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.629-633
    • /
    • 2004
  • A new PVC membrane electrode for $UO_2^{2+}$ ion based on 2,2'-[1,2-ethanediyl bis (nitriloethylidene)]bis(1-naphthalene) as a suitable ionophore was prepared. The electrode exhibites a Nernstian response for $UO_2^{2+}$ ion over a wide concentration range ($1.0{\times}10^{-1}-1.0{\times}10^{-7}$M) with a slope of 28.5 ${\pm}$ 0.8 mV/decade. The limit of detection is $7.0{\times}10^{-8}$M. The electrode has a response time of < 20 s and a useful working pH range of 3-4. The proposed membrane sensor shows good discriminating abilities towards $UO_2^{2+}$ ion with regard to several alkali, alkaline earth transition and heavy metal ions. It was successfully used to the recovery of uranyl ion from, tap water and, as an indicator electrode, in potentiometric titration of $UO_2^{2+}$ ion with Piroxycam.

Manganese(II) Ion-Selective Membrane Electrode Based on N-(2-picolinamido ethyl)-Picolinamide as Neutral Carrier

  • Aghaie, M.;Giahi, M.;Zawari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2980-2984
    • /
    • 2010
  • A new poly (vinyl chloride) (PVC) membrane electrode that is highly selective to $Mn^{+2}$ ions was prepared using N,N'-bis(2'-pyridinecarboxamide)-1,2-ethane ($bpenH_2$) as a suitable neutral carrier. This concentration range ($1.0{\times}10^{-5}$ to $1.0{\times}10^{-1}\;M$) with Nernstian slope of $29.3{\pm}0.5\;mV$ per decade. The detection limit and the response time of electrode were $8.0{\times}10^{-6}\;M$ and (${\leq}15\;s$) respectively. The membrane can be used for more than two months without observing any divergence. The electrodes exhibited excellent selectivity for $Mn^{+2}$ ion over other mono-, di- and trivalent cations. Selectivity coefficients were determined by the matched potential method (MPM). The electrode can be used in the pH range from 4.0 - 9.0. The isothermal coefficient of this electrode amounted to 0.00023 V/$^{\circ}C$. The stability constant (log $K_s$) of the $Mn^{+2}$ - $bpenH_2$ complex was determined at $25^{\circ}C$ by potentiometric titration in mixed aqueous solution. The proposed electrode was applied to the determination of $Mn^{+2}$ ions in real samples.

Lead-Selective Poly(vinyl chloride) Membrane Electrode Based on 1-Phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone

  • Zare, Hamid Reza;Ardakani, Mahammad Mazloum;Nasirizadeh, Navid;Safari, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • A PVC membrane electrode for lead ion based on 1-phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone (PQDBP) as ionophore was demonstrated. The optimum composition of the membrane was 30 wt% poly(vinyl chloride), 60 wt% dibutyl phthalate as a plasticizer, 4 wt% ionophore and 6 wt% sodium tetraphenylborate as additive. The electrode exhibits a Nernstian response (28.7 mV decade$^{-1}$) for Pb$^{2+}$ over a wide concentration range (1.0 ${\times}$ 10$^{-1}$ to 1 ${\times}$ 10$^{-6}$ M) with a detection limit of 6.0 ${\times}$ 10$^{-7}$ M. This sensor has a short response time and can be used for at least 2 months without any divergence in potentials. The proposed electrode could be used in a pH range of 3.0-6.0 and revealed good selectivities for Pb$^{+2}$ over a wide variety of other metal ions. It was successfully applied as an indicator electrode for the potentiometric titration of lead ion with potassium chromate and for the direct determination of lead in mine.