• Title/Summary/Keyword: PVA-degrading enzyme

Search Result 4, Processing Time 0.022 seconds

PVA 분해용 균주 분리${\cdot}$동정 및 특성 연구

  • Choe, Gwang-Geun;Sin, Jong-Cheol;Jeon, Hyeon-Hui;Kim, Sang-Yong;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.414-418
    • /
    • 2003
  • Through the PVA degrading test, 8 species of microbes were finally isolated, and two species among them were identified. To search PVA degrading rate by using 8 species of microbes, single species of microbes and combination of each species were tested. As a result, single species of microbes showed 96% of PVA degrading rate, and the similar result was obtained by using combination of two species. And 78% of PVA degrading rate was obtained by using enzyme which was secreted from good PVA degrading microbes. As a result of identification, this good PVA degrading microbes were Paenibacillus sp. and Microbacterium barkeri.

  • PDF

Enhancement of PVA-Degrading Enzyme Production by the Application of pH Control Strategy

  • Li, Min;Zhang, Dongxu;Du, Guocheng;Chen, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.220-225
    • /
    • 2012
  • In batch culture for Poly(vinyl alcohol) (PVA)-degrading enzyme (PVAase) production by a mixed culture, higher pH (pH 7.5) was favorable for PVAase production at the prophase of cultivation, but lower pH (pH 7.0) was favorable at the anaphase. This situation was caused by the fact that the optimum pH for different key enzymes [PVA dehydrogenase (PVADH) and oxidized PVA hydrolase (OPH)] production is various. The activity and average specific production rate of PVADH reached the highest values at constant pH 7.5, whereas those of OPH appeared at pH 7.0. A two-stage pH control strategy was therefore developed and compared for its potential in improving PVAase production. By using this strategy, the maximal PVAase activity reached 2.05 U/ml, which increased by 15.2% and 24.2% over the fermentation at constant pH 7.5 and 7.0.

Characterization of PVA Degrading Enzymes from Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 (Microbacterium barkeri KCCM 10507 및 Paenibacillus amylolyticus KCCM 10508에서 분비되는 PVA 분해 효소의 특성 연구)

  • Choi Kwang-Keun;Kim Sang-Yong;Lyoo Won-Seok;Lee Jin-Won
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.54-58
    • /
    • 2006
  • The purpose of this study is to search the characteristics of PVA degrading enzymes which were obtained from Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508, respectively. As a result of the PVA degrading test using crude enzymes, the activity of SAO (secondary alcohol oxidase) was maximized after 2 or 3 days from start of the test, while the activity of BDH (${\beta}$-diketone hydrolase) was gradually increased during the test. Activities of them were maintained in the presence of PVA, but as PVA was gradually degraded, their activity was decreased. PVA was inoculated again into the media, their activity was revealed. This result indicated that above two different enzymes were closely connected with PVA degradation and PVA was degraded by activity of SAO and BDH. Maximum activity of them was 1.5-1.8 unit for SAO and 1.5-2.0 unit for BDH under $35^{\circ}C$ and pH 7.8-8.8, respectively.

Degradation of Polyvinyl Alcohol by Brevibacillus laterosporus: metabolic Pathway of Polyvinyl Alcohol to Acetate

  • Lim, Joong-Gyu;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.928-933
    • /
    • 2001
  • Approximately 0.1 mg/ml of polyvinyl alcohol (PVA) was degraded by the growing cell, Brevibacillus laterospours, for 30 h, and 0.2 mg/ml of PVA was degraded by the cell-free extract that was isolated from Brevibacillus laterosporus. Approximately $0.29{\mu}g$/ml of acetic acid was produced from PVA by using the cell-free extract as a catalyst for 40 min. $V_{max}\;and\;K_m$ value of purified PAV-degradation enzyme was 3.75g/l and 2.75 g/l/min in reaction with EDTA and 3.99 g/l and 2.98 g/l/min in reaction without EDTA, respectively. Molecular weight of the purified enzyme determined by SDS-PAGE was 63,000 Da. Alcohol dehydrogenase and aldehyde dehydrogenase activities were qualitatively detected on a native acrylamide gel by an active staining method, indicating the existence of the metabolic pathway to use PVA as a substrate.

  • PDF