• Title/Summary/Keyword: PV systems

Search Result 601, Processing Time 0.024 seconds

Economic Analysis on a PV System in an Apartment Complex (공동주택 태양광발전 시스템의 경제성 평가)

  • Kim, Jin-Hyung
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This study analyzes the economies of photovoltaic systems in an apartment complex of 1,185 households, in cases of feed-in tariff and subsidy for solar home program of the government. When including the revenue only from electricity sales, NPVs of subsidy and that of feed-in tariff are -560 million KRW and -87 million KRW respectively. With the avoided social cost included without the revenues from CERs, NPVs of subsidy and feed-in tariff are -556 million KRW and -84 million KRW respectively. With the revenues from CERs, NPV of subsidy is -526 million KRW and NPV of feed-in tariff is -54 million KRW. As results of sensitivity analysis based on the changes in capital costs and discount rates, while all scenarios with subsidy including the revenues from CERs are not commercially viable, all scenarios with feed-in tariff exclusive of the revenues from CERs are commercially viable when discount rate is less than 7.2% or capital cost is less than 6,840 thousand KRW/kW. In the cases that include the avoided social cost, while all scenarios with subsidy including the avoided social cost as well as the revenues from CERs are not commercially viable, all scenarios with feed-in tariff are commercially viable without the revenues from CERs when discount rate is less than 7.2% or capital cost is less than 6,856 thousand KRW/KW. The results indicate that the changes in discount rates do not influence the revenues from CERs, but the revenues from electricity sale. Considering that the number of apartment complex and the positive environmental and social benefits from PV system, government needs to promote its diffusion.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

Performance Analysis of MPPT Techniques Based on Fuzzy Logic and P&O Algorithm in Actual Weather Environment (실제 날씨 환경에서 퍼지로직과 P&O 제어방식의 MPPT 동작 성능 분석)

  • Eom, Hyun-Sang;Yang, Hye-Ji;An, Hyun-Jun;Kwon, Youngsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.291-298
    • /
    • 2020
  • The power generation of a PV system changes according to the weather variables, such as solar radiation and temperature. In particular, the output characteristics of photovoltaic systems, which are sensitive to changes in solar radiation, can be produced effectively and reliably in various weather conditions through MPPT (Maximum Power Point Tracking) control. This paper proposes a fuzzy-based MPPT control method to improve the efficiency and stability of the power production from a solar system. To verify the performance of the proposed method, under the same weather environment, the efficiency and stability of the newly proposed fuzzy logic were compared and evaluated empirically with P&O (Perturb and Observe), a representative algorithm of MPPT control. Furthermore, the circuits designed to improve the reliability and reliability of the hardware were manufactured from Printed Circuit Boards (PCB) to conduct experiments. Based on the results of the experiment during a certain period, the fuzzy-based MPPT proposed in this paper improved the efficiency by more than 4.4% compared to the MPPT based on the existing P&O algorithm and decreased the fluctuation width by more than 39.7% at the maximum power point.

The Development of the Lens of the Optical System for High Concentration Solar PV System (고집광 태양광 발전을 위한 광학시스템 렌즈 개발)

  • Ryu, Kwang-Sun;Cha, Won-Ho;Shin, Goo-Hwan;Cho, Hee-Keun;Kim, Young-Sik;Kang, Seong-Won;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.82-88
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. There are two types of concentration optics for solar energy conversion. One is to use mirrors, and the other is to use Fresnel lenses. The gains that can be achieved with a Fresnel lens or a parabolic mirror are compared. The result showed the gains are comparable and the two configurations were developed competitively. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. A convex linear Fresnel lens to improve the concentration ratio and the efficiency is devised and flat linear Fresnel lens in thermal energy collection is utilized. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the 'grooves in case' has the better efficiency than that of 'grooves out case'. Based on the ray-trace results we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

Implementation of Current Control Type Inverter for using Power Conditioning of Grid-connective Power System (계통의 Power Conditioning용 전류제어형 인버터의 구현)

  • Lee S. R.;Ko S. H.;Kim S. S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.226-229
    • /
    • 2003
  • Increasing of the use nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks having non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner is mostly current controlled type. In this paper, the proposed current control algorithm is analysed and discussed about how to design the controller which can apply power conditioning operation for grid-connective PV power system. And also proposed control system. To verify the proposed current control algorithm, a comprehensive evaluation with theoretical analysis, simulation, experiment results is presented.

  • PDF

Maximum-Power-Point Tracking Using Multiphase Interleaved Converters Based on Multi-Unit Synchronization

  • Jantharamin, Niphat;Thongbuaban, Ponlawat
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.88-92
    • /
    • 2014
  • This paper presents an application of a multiphase interleaved converter in tracking maximum power points (MPPs) of a photovoltaic (PV) panel regardless of environmental variations. Maximum power from the panel was extracted by means of the well-known the perturb-and-observe (P&O) method. The switching control technique used an interleaving scheme based on multi-unit synchronization. The converter performed harmonic attenuation without affecting the tracking speed. This approach is straightforward, reliable and inexpensive, and could be applied to any higher number of switching cells without difficulty.

Analysis of Application Elements for improvement in the generated electric power performance of balcony BIPV System (발코니형 BIPV시스템의 발전성능 향상을 위한 적용요소기술 분석)

  • Kim Hyun-Il;Yu Gwon-Jong;Kang Gi-Hwan;So Jung-Hoon;Lee Kil-Song
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1483-1485
    • /
    • 2004
  • Photovoltaic(PV) technology is a popular part of building vocabulary. It can be used today on both existing and new buildings. Its use in the building envelope is very varied and open ways, such as roofing materials, facades, skylights and shading systems, for creative designers. So, to activate this systems demand appropriate sources of information, performance data of elements and design tools offering architects and designer. Therefore this paper describe application elements for BIPV system and then predict improvement in the generated electric power performance of balcony BIPV system.

  • PDF

A Study on Protection Coordination Characteristics for PV Systems on the Emergency Operation in Distribution Systems (태양광전원의 연계에 의한 보호협조 기기의 운용특성에 관한 연구)

  • Kim, Byung-Ki;Lee, Beom-Tae;Song, Suk-Hwan;Kim, Sun-Young;Kim, Chan-Hyeok;Rho, Dae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.30-33
    • /
    • 2010
  • 현재 정부는 국가차원의 녹색성장에 따른 신재생에너지의 확대보급 활성화 방안에 따라 지자체 와발전사업자 등의 분산전원 도입계획은 많은 반면, 아직 국내에는 분산전원의 연계에 따라 문제점으로 지적되는 사고전류의 증가, 보호협조의 문제 등 분산전원의 도입 시 배전계통에 끼치는 영향과 문제점에 대한 구체적인 분석이 필요한 실정이다. 본 논문에서는 배전계통 모의실험 장치 및 분산전원 모의실험 장치를 구성하여 분산전원에 의한 비상사고 시 계통의 전류변동을 계전장치 VIPAM3000을 통해 사고 상태에 대한 전류특성을 연구 하여 이에 대한 해결책을 제시 하였다.

  • PDF

Optimal Algorithm for Multi-Functional Protection Devices in Distribution Systems with PV Systems (태양광발전의 수배전반용 보호기기의 최적 알고리즘 개발)

  • Son, Joon-Ho;Rho, Dae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.378-380
    • /
    • 2010
  • 본 논문에서는 태양광이 연계된 배전계통에 있어서 발생 가능한 보호협조의 문제점을 해결하기 위하여 통합 보호기기의 최적 알고리즘을 제시한다. 현재의 배전계통 보호 방식은 단 방향 조류방식으로 구성되어 있으나, 태양광전원의 수용가 설비의 연계에 의하여 역방향의 전력조류가 발생될 수 있으며, 또한 사고 시에는 태양광전원의 사고전류 공급으로 양방향으로 사고전류가 흐를 수 있다. 따라서 본 논문에서는 양방향의 사고전류에 대한 새로운 수용가 보호 알고리즘을 탑재한 보호기기의 양방향 알고리즘을 제시한다.

  • PDF