• 제목/요약/키워드: PV system efficiency

검색결과 392건 처리시간 0.024초

이산치 신호를 이용한 PV시스템의 제어특성 (The Control Characteristics of PV System Using Discrete Data Signal)

  • 김동휘;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.93-96
    • /
    • 1999
  • Solar cell generate DC power from sunlight whose power is different at any instance according to condition of variables : insolation and temperature. In order to improve the system utility factor and efficiency of energy conversion, it is desirable to operate the PV system at maximum power point of solar cell under different condition. In this paper, Boost chopper is controlled it output voltage with a new discrete control algorithm for MPPT. PWM signal of DC-DC converter are generated with a 89C51 microcontroller. Switching frequency of DC-DC converter is set at 10KHz. Simulation and experimental results show that the PV system studied in this paper is always operated at maximum power point under different maximum power point of solar cells having stabilized output voltage waveform with relatively small ripple component

  • PDF

50kW 계통연계형 태양광발전시스템의 성능특성 결과분석 (Performance Results and Analysis of 50kW Grid-Connected PV System)

  • 소정훈;정영석;유병규;황혜미;유권종;최주엽
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.219-221
    • /
    • 2006
  • This paper presents the performance results of 50kW grid-connected PV (Photovoltaic) system for monitoring periods. Form these performance monitoring results, the PV system performance has been evaluated and analyzed for component perspective (PV array and power conditioning unit) and global perspective (system efficiency, capacity factor, and electrical power energy and power quality etc.).

  • PDF

Perez Model을 적용한 태양광 시스템 별 최적 설치 조건 및 최대 발전량 분석 (An Analysis of Optimal Installation Condition and Maximum Power Generation of Photovoltaic Systems Applying Perez Model)

  • 이재덕;김철환
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.683-689
    • /
    • 2012
  • Photovoltaic(PV) system is one of power generation systems. Solar light in PV system is like the fuel of the car. The quantity of electricity generation, therefore, is fully dependent on the available quantity of solar light on the system of each site. If a utility can predict the solar power generation on a planned site, it may be possible to set up an appropriate PV system there. It may be also possible to objectively evaluate the performances of existing solar systems. Based on the theories of astronomy and meteorology, in this paper, Perez model is simulated to estimate the available quantity of solar lights on the prevailed photovoltaic systems. Consequently the conditions for optimal power generation of each PV system can be analyzed. And the maximum quantity of power generation of each system can be also estimated by applying assumed efficiency of PV system. Perez model is simulated in this paper, and the result is compared with the data of the same model of Meteonorm. Simulated site is Daejeon, Korea with typical meteorological year(TMY) data of 1991~2010.

Design A High Efficiency Auxiliary Power Supply with Wide Input Voltage Range for PV-PCS

  • Jin, Cheng-hao;Li, Shan-mei;Kim, Jin-tae
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.343-344
    • /
    • 2012
  • In high power PV generation system, the solar cell normally generates wide output voltage depending on the insolation, cell's temperature and shade effect. This paper will propose a high efficiency converter allowing the wide input voltage to supply stable voltage with the controller and operation for the PV generation system. The proposed converter consists of two stages comprising SEPIC with a coupled inductor and LLC, which generates 24 V of output at the final output terminal. In this paper, a design method and experimental results with a test-bed of 50 W will be presented to validate the proposed converter.

  • PDF

태양전지 온도 센싱만을 통한 태양광 발전시스템의 최적 운전전압에 관한 연구 (A Study on the Optimal Voltage for MPPT Obtained by only Surface's Temperature of Solar Cell)

  • Minwon Park;In-Keun Yi
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.269-275
    • /
    • 2004
  • Photovoltaic(PV) system has been studied and watched with keen interest due to a clean and renewable power source. But, the output power of PV system is not only unstable but uncontrollable, because the maximum power point tracking (MPPT) of PV system is still hard with the tracking failure under the sudden fluctuation of irradiance. Authors suggest that the optimal voltage for MPPT be obtained by only solar cell temperature. Having an eye on that the optimal voltage point of solar cell is in proportion to its panel temperature, with operating the power converter whose operating point keeps its input voltage to the optimal voltage imagined by the surface's temperature of PV panel, the maximum power point becomes tenderly possible to be tracked. In order to confirm the availability of the proposed control scheme. And both control methods are simulated not only on the various angle of sampling time of switching control, but also with the real field weather condition. As the results of that, the conversion efficiency between PV panel and converter of the proposed control scheme was much better than that of the power comparison MPPT control, and what is better, the output voltage of PV panel was extremely in stable when the optimal voltage for MPPT is obtained by only solar cell temperature.

저일사강도에서 MPPT를 동작시키기 위한 알고리즘 연구 (A Study of MPPT Algorithm for Low Insolation)

  • 유권중;정영석;김기현;최주엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권3호
    • /
    • pp.142-149
    • /
    • 2002
  • As is well-known, the maximum power point (MPP) of PV power generation system depends on array temperature and solar insolation, it is necessary to track MPP of solar array all the time. Among various MPP control algorithms, the constant voltage control method, the perturbation and observation (P&O) method and the incremental conductance method (IncCond) have drawn many attractions due to the usefulness of each system. In this parer, the effectiveness of above mentioned three different control algorithms are thoroughly investigated via simulations and preposed efficiency evaluation method on experiment. Both the steady-state and transient characteristics of each control algorithms along with measured efficiency are analyzed, respectively. Finally, a novel MPPT control algorithm combining the constant voltage control and IncCond method for low insolation condition is proposed to improve efficiency of the 3KW PV power generation system.

태양광 발전과 연계된 직류배전 시스템의 특성연구 (Characteristics Study of DC Distribution System Interconnected with PV System)

  • 서현욱;변병주;이영진;김동진;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 추계학술대회
    • /
    • pp.201-202
    • /
    • 2011
  • Existing AC distribution system lower the efficiency of the commercial power, and also generate the conversion loss of renewable energy. In this study, DC distribution system interconnected with PV system is produced, and it is studied about characteristics of the system through the experiments which are uesd load of 3[kW].

  • PDF

CFD를 이용한 PVT 모듈 열교환기 성능 해석 (Heat efficiency Analysis of PVT module system using CFD)

  • 김양준;김동권;남승백;조인수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.112.2-112.2
    • /
    • 2011
  • PVT(Photovoltaic Thermal) 모듈은 태양광과 태양열 에너지를 동시 이용이 가능한 모듈로서 태양광전지(PV, Photovoltaic)모듈에 열교환기를 접합한 형태로 전기에너지뿐만 아니라 열에너지를 동시에 생산할 수 있는 시스템이다. 기존 PV 모듈은 일사량이 많으면 전력 생산량이 증가하는 동시에 PV모듈의 온도가 상승함에 따라 발전 효율이 감소하는 문제점이 있으며 일반적으로 $25^{\circ}C$이상 조건에서 모듈 온도가 $10^{\circ}C$ 증가할수록 발전효율의 약 4~5% 정도 감소하는 것으로 보고되고 있다. PVT 모듈은 기존 태양광모듈에 열교환기를 접합하여 냉각함으로써 PV모듈의 온도를 낮추어 발전효율을 증가시키는 동시에 부가적으로 발생하는 온수를 직접이용하거나 다양한 계통의 보조 열원으로 이용할 수 있는 장점이 있다. 본 연구에서는 수치해석기법(CFD)을 활용하여 PV모듈 냉각 및 온수 발생을 위한 열교환기를 설계하였으며 다양한 형상의 열교환기에 대해 유동해석을 수행하여 최적의 열흡수효율을 갖는 열교환기의 형상을 설계하였다. 또한 최적 설계된 PVT 모듈을 제작하여 실제 태양과 유사한 광원을 갖는 인공태양조건에서의 실내 실험을 통해 PVT 모듈의 성능을 검증하였으며 또한 실제 노상에 설치하여 ASHRAE 93-77의 실험기준과 ECN의 PVT 집열기 성능측정 가이드라인에 따라 옥외 시험평가를 하여 PVT 모듈의 성능 검증을 하였다. 최적 설계된 PVT모듈에 대한 성능평가 결과 기존 PV 모듈보다 발전효율이 약 15%(기존 발전효율 대비) 향상된 결과를 확인하였다.

  • PDF

Encapsulation용 silicone을 사용한 모듈제조 공정에 대한 연구 (The study on PV module development using the silicone encapsulation)

  • 정인성;이우진;이범수;양오봉;정은석;김종일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.130.1-130.1
    • /
    • 2011
  • Nowadays, the number of PV module corporation is increasing due to demand growth of silicon solar module. However almost study of module is research about increasing of efficiency for it. This study is evaluation and development for process of module using the silicone encapsulation material instead of existing EVA sheet. We are changed adding material ratio on silicone and thickness of silicone. So we get better efficiency than EVA sheet through the evaluation for silicone liquid and modulation. Also, we are test after establishing manufacture system being able to quicker than existing modules line. The result of EVA sheet is average 207.47W and silicone material is 211.32W so we think that silicone is better than EVA sheet.

  • PDF

PV의 건축물 적용기법에 관한 연구 (A Study on the Application Method of Photovoltaic in Building)

  • 이응직;김회서
    • 한국태양에너지학회 논문집
    • /
    • 제22권2호
    • /
    • pp.1-10
    • /
    • 2002
  • This study is a study on the building integrated method of Photovoltaic. It was analyzed into a basic installation condition and an integrated form in this study. And it was confirmed through the 3D simulation & drawing work of an integrated situation to the real domestic building. The Photovoltaic installation of the country to an optimal efficiency for the year must be installed to the due south with an angle of thirty degrees. And also a module spacing must be more than doubled from the bottom to the top of module to prevent from efficiency falling by a shadow of photovoltaic module in a roof setting of flat roof. If Photovoltaic module is an adequate material that is a basic requirement as a building's finishing material, it's not only an efficiency of alternation with an existing finishing material but also a building's design element.