• Title/Summary/Keyword: PV simulator

Search Result 87, Processing Time 0.053 seconds

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Study on the Voltage Stabilization Technology Using Photovoltaic Generation Simulator in Three-Level Bipolar Type DC Microgrid

  • Kim, Taehoon;Kim, Juyong;Cho, Jintae;Jung, Jae-Seung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1123-1130
    • /
    • 2018
  • Voltage stabilization is an essential component of power quality in low voltage DC (LVDC) microgrid. The microgrid demands the interconnection of a number of small distributed power resources, including variable renewable generators. Therefore, the voltage can be maintained in a stable manner through the control of these distributed generators. In this study, we did research on the new advanced operating method for a photovoltaic (PV) simulator in order to achieve interconnection to a bipolar LVDC microgrid. The validity of this voltage stabilization method, using the distributed generators, is experimentally verified. The test LVDC microgrid is configured by connecting the developed PV simulator and DC load, DC line, and AC/DC rectifier for connecting the main AC grid. The new advanced control method is applied to the developed PV simulator for the bipolar LVDC grid in order to stabilize the gird voltage. Using simulation results, the stabilization of the grid voltage by PV simulator using the proposed control method is confirmed the through the simulation results in various operation scenarios.

Simulator Development for Stand Alone PV System Design (태양광발전 시스템 설계를 위한 시뮬레이터 개발)

  • Kang, S.Y.;Kim, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.383-388
    • /
    • 2003
  • The stand alone PV system's stability and cost is influenced by a design method, as its application products are various. In order to systematize the the stand alone PV system's design method based on experience, this research settled the capacity computation method of PV module and battery and developed a simulator. And Its characteristic is confirmed by applying to PV street lamp design.

  • PDF

Analysis of THD according to Output Power Fluctuation of Photovoltaic Generation System using Real Time Simulator (실시간 시뮬레이터를 이용한 태양광 발전 시스템의 출력 변동에 따른 THD 분석)

  • An, Hee-Jin;Seo, Hun-Chul;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.361-366
    • /
    • 2012
  • This paper analyzes the THD(Total Harmonics Distortion) according to output power fluctuation of photovoltaic(PV) systems using real time simulator. For being close to reality, the PV system including inverter and MPPT(Maximum Power Point Tracking) which composed of closed-loop using real-time simulator are modeled. The change of irradiance and temperature of PV module is modeled to consider the change of weather. The various simulations according to the weather conditions are performed and THD is calculated at each condition. In this paper, the results by off-line simulation are compared with the ones of real time simulation.

The Implementation of photovoltaic simulator system with ATEasy Tool and PPS (ATEasy Tool과 PPS를 이용한 태양광 시뮬레이터 시스템 구현)

  • Kim, Sang-Mo;Jang, Ki-Young;Kim, Ki-Hyun;Lee, Seung-Hee;Yu, Gwon-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.103-106
    • /
    • 2009
  • In this paper, the implemented photovoltaic array simulator is the power supply based on a common photovoltaic characteristic. This simulator is consisted of a common DC power supply and PC for controlling output. User can select the number of PV modules and solar radiation energy and then can get output whatever user wants. This simulator is a very helpful system to PV generating test and unexpensive than the existing PV simulators.

  • PDF

Analysis of Solar Simulator's Uncertainty Factor for Maximum Output Power Test of Photovoltaic Module (PV모듈의 발전성능시험을 위한 Solar Simulator의 측정불확도 요인 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • In this paper, we analyzed the elements of measurement uncertainty on electrical performance test which are the most important things in photovoltaic module performance test. Repeating the performance test by 6 men, the measurement uncertainty could be calculated. In this experiment, Solar Simulator (A-Class pulse type) used for domestic certificate test of PV module is Pasan IIIb (Balval, Switzerland). The possible elements of the measurement uncertain that could effect electrical performance test of PV module are reference cell, spectrum correction, error from measurement repetition, test condition, stability and uniformity of artificial solar simulator. To find the measurement uncertainty, 6 men repeated the test by 10 times. And the results were that numerical average value was 124.44W and measurement uncertainty was $124.44W{\pm}0.36W$ with 95% confidence level for 125W PV module(KD-5125).

Analysis of Solar Simulator's Uncertainty Factor for Photovoltaic Module's I-V curve test (PV모듈의 I-V특성 시험을 위한 Solar Simulator의 측정불확도 요인 분석)

  • Kang, Gi-Hwan;Park, Chi-Hong;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.5-7
    • /
    • 2006
  • In this paper, we analyzed the elements of measurement uncertainty on electrical performance test which are the most important things in photovoltaic module performance test. Repeating the performance test by 6 men, the measurement uncertainty could be calculated. In this experiment, Solar Simulator (A-Class pulse type) used for domestic certificate test of PV module is Pasan IIIb (Balval, Switzerland). The possible elements of the measurement uncertain that could effect electrical performance test of PV module are reference cell, spectrum correction, error from measurement repetition, test condition, stability and uniformity of artificial solar simulator. To find the measurement uncertainty, 6 men repeated the test by 10 times. And the results were that numerical average value was 124.44W and measurement uncertainty was $124.44W{\pm}0.75W$ with 95% confidence level for 125W PV module.

  • PDF

Parameterization algorithm for PV cell by comparison of the root of equation (방정식근의 비교를 이용한 PV Cell Parameter 추출 방법)

  • Park, Hyeonah;Yu, Taesik;Lee, Sungmin;Kim, Hyosung
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.570-571
    • /
    • 2012
  • 본 논문에서는 PV Simulator의 운전시 기존 방식에 비해 성능이 우수한 PV Cell Modeling 알고리즘을 제안한다. PV Simulator가 PV Cell의 비선형적인 I-V 특성을 구현하기 위해서는 제조사가 제공하는 3가지 운전점(단락회로운전, 개방회로운전 및 최대전력운전)에서의 전압, 전류 데이터를 이용하여 빠르고 정확하게 PV Cell 등가회로의 파라메터 값을 추출하여야 한다. 본 논문에서는 방정식 근을 비교하는 방식을 이용하여 기존 방식에 비해 실리콘-결정형 및 박막형 셀을 포괄하는 빠르고 정확한 등가회로 파라메터 추출방법을 제시하고, 제안한 모델링 방법에 대한 유효성을 시뮬레이션을 통해 검증하였다.

  • PDF

Comparative Study of Maximum Power Point Tracking Algorithms Using PV Array Simulator (태양전지 모의 전원을 이용한 MPPT 알고리즘의 비교 고찰)

  • Jung Youngseok;So Junghun;Yu Gwonjong;Choi Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.234-237
    • /
    • 2003
  • As the maximum power operating point (MPOP) of photovoltaic (PV) power systems changes with changing atmospheric conditions, the efficiency of maximum power point tracking (MPPT) is important in PV power systems. Many MPPT techniques have been considered in the past, but techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. In this paper, we proposed a new MPPT control method called improved perturb and observe method (ImP&O), anda simple voltage and current characteristic equation of a PV array for PV array simulator. Experimental results verify the accuracy and excellent performance of the proposed MPPT method. ImP&O algorithm is very simple, and has successful tracked the MPOP, even in case of rapidly changing atmospheric conditions.

  • PDF

Embodiment of Photovoltaic Simulator based on Buck Converter (Buck Converter를 이용한 태양광 시뮬레이터 개발)

  • Song, Doo-Young;Kwak, Sang-Hyun;Park, Sung-Jun;Lee, Min-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.189-192
    • /
    • 2008
  • This paper introduces the photovoltaic(PV) simulator for the inverter of PV energy system. In order to embody the PV simulator, the conventional solar cell is numerically modeled based on the one-diode equivalent circuit. With the P-V relationships, we find the maximum and minimum power which is needed during the inverter performs the MPPT algorithm and design the parameter based on the maximum and minimum power. Finally, this paper verifies design parameters numerically through the PSIM and analyzes the PV simulator in the frequency domain using Matlab.

  • PDF