• Title/Summary/Keyword: PV power system

Search Result 1,106, Processing Time 0.055 seconds

MPPT Control Method comparison of the Stand-alone PV system (독립형 태양광 발전시스템의 MPPT 제어기법 비교)

  • Lee, Yong-Sik;Kim, Nam-In;Jeong, Sung-Won;Gim, Jae-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1386-1387
    • /
    • 2011
  • Maximum power point tracking(MPPT) techniques are used in photovoltaic systems to maximize the PV array output power by tracking continuously the maximum power point which depends on panels temperature and on irradiance conditions. In this paper, the controller of the stand-alone PV system applicable to various fields are designed. The improved P&O MPPT and traditional P&O MPPT method was applied. This improved algorithm consists of a constant perturbation with an step control which will make easier the controller PV power data acquisition process. This strategy of control has, in first time, been validated by PSIM simulations. After, been field test. The experimental results show that the improved P&O method increased the PV output power compare to traditional P&O method.

  • PDF

600W PV ESS with DC power supply function (DC전원공급 기능을 보유한 600W PV ESS)

  • Paeng, Seongil;Park, Unho;Lim, Yong-Bae;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.85-86
    • /
    • 2017
  • 본 논문에서는 DC 48V 전원 공급이 가능한 600W급 PV ESS( Energy Storage system)시스템에 대하여 제안한다. PV 입력부는 100V이하의 전압 입력에서 사용할 수 있도록 3레벨 부스트(Three level boost)컨버터로 구성하였다. 배터리는 양방향 DC/DC 컨버터를 사용하였고 DC48V부는 벅 컨버터로 구성하였다. 제안한 시스템의 검증하기 위하여 시뮬레이션과 600W PV ESS 시스템을 구성 실험을 진행하였다.

  • PDF

Method for PV Module Mismatch Compensation to Reduce Parallel Mismatch in Solar PV Array (태양광 PV 어레이에서 병렬 부정합을 저감시키는 모듈 부정합 보상기법)

  • Park, Gi-Yob;Ahn, Hee-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.170-171
    • /
    • 2010
  • The power loss due to PV module mismatch in PV array system is analyzed and a mismatch compensation method is proposed. A dc-dc converter is used to compensate for series mismatch caused by a low current module in a string. The converter is controlled to maximize the array power output. The proposed compensation method was verified by PSpice simulation.

  • PDF

Power Gain during Partial Shade Condition with Partial Shade Loss Compensation in Photovoltaic System

  • Yoon, Byung-Keun;Yun, Chul;Cho, Nae-Soo;Choi, Sang-Back;Jin, Yong-Su;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.769-780
    • /
    • 2018
  • This paper presents an analysis of the power gain under partial shading conditions (PSC) when the partial shade loss is being compensated in photovoltaic(PV) system. To analyze the power gain, our study divides the mismatch loss into partial shade loss and operating point loss. Partial shade loss is defined as the power difference between a normal string and a partially shaded string at the maximum power point (MPP). Operating point loss is defined as the power loss due to the operating point shift while following the MPP of the PV array. Partial shading in a PV system affects the maximum power point tracking (MPPT) control by creating multiple MPPs, which causes mismatch losses. Several MPPT algorithms have been suggested to solve the multiple MPP problems. Among these, mismatch compensation algorithms require additional power to compensate for the mismatch loss; however, these algorithms do not consider the gain or loss between the input power required for compensation and the increased output power obtained after compensation. This paper analyzes the power gain resulting from the partial shade loss compensation under PSC, using the V-P curve of the PV system, and verifies that power gain existence by simulation and experiment.

Maximum power point tracking method for building integrated PV system (건물용 태양광 컨버터의 최대전력 추종 기법 개발)

  • Yu, Byung-Gyu;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.299-303
    • /
    • 2011
  • This paper proposes a novel sensorless maximum power point tracking (11PPT) algorithm for PV systems. The method is based on dividing the operating time into several intervals in which the PV terminals are short circuited in one interval and the calculated short-current of the PV is obtained and used to determine the optimum operating point where the maximum output power can be obtained. The proposed MPPT algorithm has been introduced into a current-controlled boost converter whose duty ratio is controlled to the maintain MPP condition. The same sequence is then repeated regularly capturing the PV maximum power. The main advantage of this method is eliminating the current sensor. Meanwhile, this MPPT algorithm reduces the power oscillations around the peak power point which occurs with perturbation and observation algorithms. In addition, the total cost will decrease by removing the current sensor from the PV side. Finally, simulation results confirm the accuracy of the proposed method.

  • PDF

A Study on the Evaluation of Power Performance according to Temperature Characteristics of Amorphous Transparent Thin-Film (비정질 박막 투과형 태양전지모듈의 온도특성에 따른 발전성능 평가 연구)

  • An, Young-Sub;Song, Jong-hwa;Lee, Sung-jin;Yoon, Jong-ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.45-48
    • /
    • 2009
  • This study evaluated the influence of temperature on the PV module surface on power output characteristics, especially for an amorphous transparent thin-film PV module which was applied to a full-scale mock-up model as building integrated photovoltaic system. The tested mock-up consisted of various slopes of PV module, facing to the south. The annual average temperature of the module installed with the slope of $30^{\circ}$ revealed $43.1^{\circ}C$, resulting in $7^{\circ}C$ higher than that measured in PV modules with the slope of $0^{\circ}$and $90^{\circ}$ did. This $30^{\circ}$ inclined PV module also showed the highest power output of 28.5W (measured at 2 PM) than other two modules having the power output of 20.4W and 14.9W in the same time for $0^{\circ}$ and $90^{\circ}$ in the slope, respectively. In case of the $30^{\circ}$ inclined PV module, it exhibited very uniform distribution of power output generation even under the higher temperature on the module surface. Consequently, the surface temperature of the PV module analyzed in this study resulted in 0.22% reduction in power output in every $1^{\circ}C$ increase of the module surface temperature.

  • PDF

Active Frequency with a Positive Feedback Anti-Islanding Method Based on a Robust PLL Algorithm for Grid-Connected PV PCS

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.360-368
    • /
    • 2011
  • This paper proposes an active frequency with a positive feedback in the d-q frame anti-islanding method suitable for a robust phase-locked loop (PLL) algorithm using the FFT concept. In general, PLL algorithms for grid-connected PV PCS use d-q transformation and controllers to make zero an imaginary part of the transformed voltage vector. In a real grid system, the grid voltage is not ideal. It may be unbalanced, noisy and have many harmonics. For these reasons, the d-q transformed components do not have a pure DC component. The controller tuning of a PLL algorithm is difficult. The proposed PLL algorithm using the FFT concept can use the strong noise cancelation characteristics of a FFT algorithm without a PI controller. Therefore, the proposed PLL algorithm has no gain-tuning of a PI controller, and it is hardly influenced by voltage drops, phase step changes and harmonics. Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) systems in order to meet the stringent standard requirements for interconnection with an electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also affects the shape and quality of the grid injected current. In this paper, the active anti-islanding algorithm for a grid-connected PV PCS uses positive feedback control in the d-q frame. The proposed PLL and anti-islanding algorithm are implemented for a 250kW PV PCS. This system has four DC/DC converters each with a 25kW power rating. This is only one-third of the total system power. The experimental results show that the proposed PLL, anti-islanding method and topology demonstrate good performance in a 250kW PV PCS.

The practical operating evaluation of the grid connected PV power system (계통연계형 태양광발전시스템의 실증운전 평가)

  • Kim, Eui-Hwan;Ahn, Kyo-Sang;Lim, Hee-Chun
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.72-77
    • /
    • 2008
  • The purpose of this paper is to explain the real characteristics of generation system of large scale power system of high voltage the grid connected PV power system for electricity industry. Main system is made up PCS in the class 150kVA. and we studied commercial operation in Korea-Western Power Company,(Tae-An headquarter) with the capacity of module is 122.5 $kW_p$. On the average, power plant utilities' utilization is 12.71 percent and consumption rate is 6.66 percent. We operated normally since 25th, August 2005 without any other problems.

Development of PV power generation system simulator (태양광 발전시스템 모의를 위한 PV simulator 개발)

  • Park, Hae-Yong;Lee, Seok-Ju;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1968-1969
    • /
    • 2007
  • In recent years, the research and development for the photovoltaic(PV) energy system are making rapidly progress around the world and specially this country, too due the deregulation law for the renewable energy system seems to be born sooner or later. If we can study PV generation system regardless of weather condition, we will study much more efficiently. This paper introduces the algorithm of PV power generation system simulator and the results of simulation by using PSCAD/EMTDC. In next paper, authors will prove the algorithm of PV simulator proposed in this paper by making real simulator and getting the result of experiment.

  • PDF

Techno-Economic Analysis of Water Electrolysis System Connected with Photovoltaic Power Generation (태양광 발전 연계 수전해 시스템의 경제성 분석)

  • HWANG, SUNCHEOL;PARK, JIN-NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.477-482
    • /
    • 2021
  • Hydrogen production, hydrogen production cost, and utilization rate were calculated assuming four cases of hydrogen production system in combination of photovoltaic power generation (PV), water electrolysis system (WE), battery energy storage system (BESS), and power grid. In the case of using the PV and WE in direct connection, the smaller the capacity of the WE, the higher the capacity factor rate and the lower the hydrogen production cost. When PV and WE are directly connected, hydrogen production occurs intermittently according to time zones and seasons. In addition to the connection of PV and WE, if BESS and power grid connection are added, the capacity factor of WE can be 100%, and stable hydrogen production is possible. If BESS is additionally installed, hydrogen production cost increases due to increase in Capital Expenditures, and Operating Expenditure also increases slightly due to charging and discharging loss. Even in a hydrogen production system that connects PV and WE, linking with power grid is advantageous in terms of stable hydrogen production and improvement of capacity factor.