• Title/Summary/Keyword: PV module temperature

Search Result 197, Processing Time 0.037 seconds

Characteristics variation of PV module by damaged bypass diodes

  • Sin, U-Gyun;Jeong, Tae-Hui;Go, Seok-Hwan;Gang, Gi-Hwan;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.424.2-424.2
    • /
    • 2016
  • Solar cell converts light energy to electric energy. But a solar cell generates low power, PV module is fabricated by connected in series with dozens of solar cell. Owing to solar cell connected in series, power of PV module is influenced by shading or mismatch power of solar cells. To prevent power loss of PV module by shading or mismatch current, Bypass diodes are installed in PV module. Bypass diode operating reverse voltage by shading or mismatch power of solar cells bypass mismatch current. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we confirm characteristics variation of PV module with damaged bypass diode. As a result, power of PV module with damaged bypass diode is reduced and Temperature of that is increased.

  • PDF

Generation characteristics of transparent BIPV module according to temperature change (건물일체형 투명 모듈의 온도 변화에 따른 발전 특성)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;Yu, Gwon-Jong;Jang, Dae-Ho;Lee, Moon-Hee;Kim, Jun-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.210-211
    • /
    • 2007
  • Amid booming PV(photovoltaic) industry, BIPV(Building Integrated PV) is one of the best fascinating PV application technologies. To apply PV in building, variable factors should be reflected such as installation position, shading, temperature effect and so on. Especially a temperature should be considered, for it affects both electrical efficiency of PV module and heating and cooling load in building. Transparent PV modules were designed as finished material for spandrels are presented in this paper. The temperature variation of the modules with and without air gap and insulation were compared and analyzed. The results showed that the module with air gap and insulation has a much larger temperature variation than another transparent module. The temperature of the module reached by 55degree C under vertical irradiance of lower 500$W/m^2$. And the temperature difference between these modules was about 15degree C. To analyze the output performance of module according to temperature variation, separate module was manufactured and measured by sun-simulator. The results showed that 1 degree temperature rise reduced about 0.45% of output power.

  • PDF

Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics (지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.

Peeling Behavior of Backsheet according to Surface Temperature of Photovoltaic Module (태양광 모듈 표면 온도 제어에 따른 백시트 박리 거동)

  • Kim, Jeong-Hun;Lee, Jun-Kyu;Ahn, Young-Soo;Yeo, Jeong-Gu;Lee, Jin-Seok;Kang, Gi-Hwan;Cho, Churl-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.703-708
    • /
    • 2019
  • In this study, we investigate the relationship between the peeling behavior of the backsheet of a photovoltaic(PV) module and its surface temperature in order facilitate removal of the backsheet from the PV module. At low temperatures, the backsheet does not peel off whereas, at high temperatures, part of the backsheet remains on the surface of the PV module after the peeling process. The backsheet material remaining on the surface of the PV module is confirmed by X-ray diffraction(XRD) analysis to be poly-ethylene(PE). Differential scanning calorimetry(DSC) is also performed to investigate the interfacial characteristics of the layers of the PV module. In particular, DSC provides the melting temperature($T_m$) of laminated ethylene vinyl acetate(EVA) and of the backsheet on the PV module. It is found that the backsheet does not peel off below the $T_m$ of ethylene of EVA, while the PE layer of the backsheet remains on the surface of the PV module above the $T_m$ of the PE. Thus, the backsheet is best removed at a temperature between the $T_m$ of ethylene and that of PE layer.

Improved Photovoltaic MATLAB Modeling Accuracy by Adding Wind Speed Effect

  • An, Dong-Soon;Poudel, Prasis;Bae, Sang-Hyun;Park, Kyung-Woo;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Photovoltaic (PV) are generally modeled using mathematical equations that describe the PV system behavior. Most of the modeling approach is very simple in terms of that PV module temperature is calculated from nominal constant cell temperature such as ambient temperature and incoming solar irradiance. In this paper, we newly present MATLAB model particularly embedding the effect of wind speed to describe more accurate cell temperature. For analyses and validate purpose of the proposed model, solar power is obtained and compared with and without wind speed from the 50Wp PV module provided by vendor datasheet. In the simulation result, we found that power output of the module is increased to 0.37% in terms of cell temperature a degreed down when we consider the wind speed in the model. This result is well corresponded with the well-known fact that normal PV is 0.4% power changed by cell temperature a degree difference. Therefore it shows that our modeling method with wind speed is more appropriate than the methods without the wind speed effect.

An Experimental Study of a Water Type PV/Thermal Combined Collector Unit (액체식 PV/Thermal 복합모듈의 성능실험연구)

  • Lee, Hyun-Ju;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.105-111
    • /
    • 2007
  • Hybrid PV/Thermal systems consisting of photovoltaic module and thermal collector can produce the electricity and thermal energy. The solar radiation increases the temperature of PV modules, resulting in the decrease of their electrical efficiency. Accordingly hot air can be extracted from the space between the PV panel and roof, so the efficiency of the PV module increases. The extracted thermal energy can be used in several ways, increasing the total energy output of the system. This study describes a basic type of PV/T collector using water. In order to analyze the performance of the collector, the experiment was conducted. The result showed that the thermal efficiency was 17% average and the electrical efficiency of the PV module was about $10.2%{\sim}11.5%$, both depending on solar radiation, inlet water temperature and ambient temperature.

Analysis on Thermal Performance of BIPV in Spandrel (스펜드럴부 적용 BIPV 모듈의 열 특성 분석)

  • Kim, Ha-Ryeon;Kim, Jin-Hee;Kang, Gi-Hwan;Yu, Gwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.364-369
    • /
    • 2011
  • Recently, the cases of BIPV(Building-integrated Photovoltaic) have been increased with interest in renewable energy application for buildings. PV System in building can perform a variety of roles as an energy supplier, exterior materials, aesthetic element and etc. To apply PV modules in buildings, various factors should be considered, such as the installation angle and orientation of PV module, shading, and temperature. The temperature of PV modules that are attached to building surfaces especially is one of the most important factors, as it affects both the electrical efficiency of a PV module and the energy load in a building. BIPV modules designed as finished material for spandrels are presented in this paper. The purpose of this study is to analysis on the thermal performance characteristics of BIPV modules. This study dealt with different types of BIPV modules depending on the backside material, such as clear glass and backsheet. The analysis of monitoring data shows that the PV module temperature was closely related to the solar radiation on the BIPV module surface, and the BIPV used at the backside also had an effect on the PV module temperature that in turn determines its thermal performance.

  • PDF

The analysis on PVB film optical characteristics for PV module generating in high-temperature (고온용 PV module을 위한 PVB film 광특성 연구)

  • Lee, Sang-Hun;Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1320-1321
    • /
    • 2011
  • According to the advance that solar power plants go into the desert, power plants are getting greater capacity. The desert is unspoiled resources and it is well suited to build a solar power plant, because of abundant solar radiation and long sunshine duration. but existing PV modules have several weaknesses and don't generate lower the rated power, because it wasn't designed to produce in extreme environments like a desert climate. The one of the weaknesses of PV modules is that the characteristics of the temperature of the Encapsulants(EVA sheet) are not good in a desert climate, because the EVA sheet is melt at high temperature. In this study, a decrease phenomenon of the transmittance depending on the melting point of the Encapsulant(PV module using EVA sheet : $75^{\circ}C$ PV module using PVB film : $110^{\circ}C$) is suggested, it would be the one of the important factors to achieve rated output of the PV modules in high temperature climate regions.

  • PDF

Evaluation of Electric and Thermal Characteristics of Photovoltaic Module under Various Temperature and Irradiance Conditions (다양한 외부 환경에서의 태양전지모듈의 열적 전기적 특성 평가)

  • Kim, Kyung-Soo;So, Jung-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.125-130
    • /
    • 2010
  • Normally, PV system is designed using local weather condition like lowest and highest temperature and irradiance. But this might give misleading results because it is not realistic data of PV module itself. To give more specific description of PV system, we tested photovoltaic(PV) modules' temperature, irradiance and maximum power generation characteristics from January to December in 2008 for 3kW PV system. From this, we could deeply analyze the accumulation temperature, electrical characteristics of PV module in various condition. So precise approach to PV system design can be done. The detail description is specified as the following paper.

The Effects of PV Cell's Electrical Characteristics for PV Module Application (태양전지의 전기적인 출력특성이 태양전지모듈에 미치는 영향)

  • Kim, Seung-Tae;Kang, Gi-Hwan;Park, Chi-Hog;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.36-41
    • /
    • 2008
  • In this paper, we study The Effects of PV Cell's Electrical Characteristics for PV Module Application. Photovoltaic module consists of serially connected solar cell which has low open circuit voltage and high short circuit current characteristics. The whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and Random. The PV module exposed about 35days, its the maximum power drop ratio was 4.282% minimum and 6.657% maximum. And PV module of low current characteristics has electrical stress from other modules. The solar cell temperature of PV module was higher compared to PV cell. To prevent early degradation, it is need to have attention to PV cell selection.

  • PDF