• Title/Summary/Keyword: PV modeling

Search Result 132, Processing Time 0.029 seconds

PV모듈 모델링에 의한 성능모의 결과비교 (Performance Simulation Results for Photovoltaic Module Modeling)

  • 소정훈;유병규;황혜미;유권종;최주엽
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1988-1993
    • /
    • 2008
  • Photovoltaic (PV) modules operate over a large range of conditions but manufacturer's information is not sufficient to determine their overall performance. Designers need a reliable tool to predict energy production from a photovoltaic module under all conditions in order to make a sound decision. The modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of PV modules modeling by comparing measured with simulated value.

PV cell modeling의 수학적 고찰 (Mathematical Consideration on PV Cell Modeling)

  • 박현아;김효성
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.51-56
    • /
    • 2014
  • PV cell modeling is necessary both for software and hardware simulators in analyzing and testing the performance of PV generation systems. Unique I-V curve of a PV cell identifies its own characteristics by electrical equivalent model that is composed of diode constants ($I_o$, $v_t$), photo-generated current ($I_{ph}$), series resistance ($R_s$), and shunt resistance ($R_{sh}$). Photo-generated current can be easily estimated since it is proportional to irradiation level. However, other electrical parameters should be solved from the manufacturer's data sheet that is consisted with three remarkable operating points such as open circuit voltage ($V_{oc}$), short circuit current ($I_{sc}$), and maximum power voltage/current ($V_{MPP}/I_{MPP}$). This paper explains and analyzes mathematical process of a novel PV cell modeling algorithm that was proposed by the authors with the name of "K-algorithm".

A Study on the Control Method of Customer Voltage Variation in Distribution System with PV Systems

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Yong-peel;Kim, Eung-sang;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.838-846
    • /
    • 2015
  • This paper deals with the modified modeling of PV system based on the PSCAD/EMTDC and optimal control method of customer voltages in real distribution system interconnected with the photovoltaic (PV) systems. In order to analyze voltage variation characteristics, the specific modeling of PV system which contains the theory of d-q transformation, current-control algorithm and sinusoidal PWM method is being required. However, the conventional modeling of PV system can only perform the modeling of small-scale active power of less than 60 [kW]. Therefore, this paper presents a modified modeling that can perform the large-scale active power of more than 1 [MW]. And also, this paper proposes the optimal operation method of step voltage regulator (SVR) in order to solve the voltage variation problem when the PV systems are interconnected with the distribution feeders. From the simulation results, it is confirmed that this paper is effective tool for voltage analysis in distribution system with PV systems.

해석모델을 이용한 태양광모듈의 성능결과 비교분석 (Comparison Results of Photovoltaic Module Performance using Simulation Model)

  • 소정훈;유병규;황혜미;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.56-61
    • /
    • 2008
  • The modeling of PV (Photovoltaic) module is useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of this modeling method by comparing measured with simulated value of various PV modules using simulation model.

MATLAB 기반의 PLECS를 이용한 태양광 모델링 및 발전시스템 개발 (Development of Photovoltaic Modeling and Generation System using PLECS in MATLAB)

  • 최규영;김종수;이영국;이병국
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2379-2384
    • /
    • 2009
  • In this paper, based on MATLAB which has characteristic that is simply applied to control algorithm and source modeling, photovoltaic modeling is implemented. Photovoltaic modeling is similarly performed PV array and simulated. Also, in order to output maximum power of PV, MPPT control is simulated. Moreover, simulation of converter is performed by means of PLECS (Piece wise Linear Electrical Simulation) which is easily made schematic of power electronics. Also, we compare simulation results and Sharp PV module and Suntech PV module. Finally, informative simulation of PV generation system is provided.

태양광에너지 중심의 신재생에너지 기술경제학 모델링 연구 (The technical-economic study of solar PV and renewable energy)

  • 이문수;이민진;이영희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.136.1-136.1
    • /
    • 2011
  • An energy modeling analysis method currently has been considered as a new approach for energy policy research, because the importance of renewable energy use has been emphasized more and more. This study used RETScreen model as a clean energy decision making methodology for adaptation to climate change and elimination of various pollutions. This modeling method includes five step standard analysis; energy model, cost analysis, GHG analysis, financial analysis, and sensitivity & risk analysis and it also assesses both conventional and modern energy sources and technologies. This methodology for the photovoltaic(PV) energy modeling is used to evaluate the energy production, financial performance and GHG emissions reduction of photovoltaic projects. In addition, the PV application systems are classified into three basic applications; On-grid system, Off-grid system and water pumping system. This study assesses the renewable energy techno-economic modeling method with the feasibility analysis result of 10 MW PV power plant in Abu Dhabi in United Arab Emirates. Furthermore this study stresses the importance of renewable energy model research by applying to domestic PV power plant which is now in preparation.

  • PDF

태양광모듈의 모델링 및 성능해석 결과비교 (A modeling and performance comparison of photovoltaic module)

  • 소정훈;유병규;황혜미;유권종;최주엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1128-1129
    • /
    • 2008
  • The detailed modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV array performance for changing meteorological conditions, verify actual rated power of PV system sizing and, determine the optimal design of PV system and components. This paper investigates a modeling approach of PV module performance in terms of irradiance and temperature changes and compared measured with simulated value of PV modules.

  • PDF

PSCAD/EMTDC를 미용한 계통연계형 태양광발전시스템의 모델링 및 모의 해석 (PSCAD/EMTDC Based Modeling and Simulation Analysis of a Grid-Connected Photovoltaic Generation System)

  • 전진홍;김응상;김슬기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권3호
    • /
    • pp.107-116
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMTDC, an industry standard simulation tool for studying the transient behavior of electric power system and apparatus, is used to conduct all aspects of model implementation and to carry out extensive simulation study. This paper is aimed at sharing with the PSCAD/EMTDC user community our user-defined model for PV system applications, which is not yet available as a standard model within PSCAD/EMTDC. An equivalent circuit model of a solar cell has been used for modeling solar array. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed.

계통연계형 태양광발전시스템의 동특성 모델링 및 모의해석 (Modeling and Simulation Analysis of Grid-Connected Photovoltaic Generation System in terms of Dynamic behavior)

  • 김응상;김슬기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.127-131
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMIDC. an industry standard simulation tool for studying the transient behavior of electric power system and apparatus. is used to conduct all aspects of model implementation and to carry out extensive simulation study. An equivalent circuit model of a solar cell has been used for modeling solar array. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed

  • PDF

PV cell modeling의 수학적 고찰 (Mathematical Consideration on PV Cell Modeling)

  • 박현아;김효성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.234-235
    • /
    • 2013
  • PV cell model은 PV simulator를 제작하거나 시뮬레이션 Software를 통하여 PV 발전시스템을 분석하기 위하여 필요하다. PV cell의 I-V 특성곡선은 PV cell의 특성을 결정짓는 중요한 요소이며, 전기적으로 다이오드정수($I_o$, $v_t$)와 광전류원($I_{ph}$) 그리고 직렬저항($R_s$) 및 션트저항($R_{sh}$)으로 모델링 가능하다. 광 전류원은 일사량에 비례하여 그 값을 추정할 수 있으나 나머지 변수인 다이오드정수($I_o$, $v_t$)와 직렬저항($R_s$) 및 션트저항($R_{sh}$)은 제조사 데이터시트에서 제공하는 3개의 대표적인 운전점인 개방회로 전압($V_{oc}$), 단락회로 전류($I_{sc}$), 그리고 최대출력에서의 전압/전류($V_{MPP}/I_{MPP}$)를 기초로 수학적으로 해를 구하여야만 한다. 본 논문에서는 저자가 제안하는 K-알고리즘의 수학적 도출 과정과 수치해석적 특성을 고찰한다.

  • PDF