• Title/Summary/Keyword: PV hosting capacity

Search Result 7, Processing Time 0.019 seconds

Re-estimation of PV hosting capacity by improving parameters for voltage controls of the smart inverter (스마트인버터 전압제어의 파라미터 개선을 통한 PV hosting capacity 재추정 방법)

  • Juhyeon Kim;Gihwan Yoon;Yoondong Sung;Hak-Geun Jeong;Jongbok Baek;Moses Kang
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.657-667
    • /
    • 2023
  • This paper proposes two-stage optimization framework to re-estimate the photovoltaic (PV) hosting capacity (HC) by improving parameters for voltage controls of the smart inverter. In the first stage, PV HC is estimated considering Volt-Var (VV) and Volt-Watt (VW) controls, aligning with IEEE Std 1547-2018 guidelines. In the second stage, adjust parameters of VV and VW to improve HC. To investigate the performance of the proposed algorithm, simulations conducted using OpenDSS on an IEEE 37-bus system. The results demonstrate that effectively increases PV HC.

Evaluation algorithm for Hosting Capacity of PV System using LDC Method of Step Voltage Regulator in Distribution Systems (배전계통에 있어서 선로전압조정장치의 LDC방식에 의한 태양광전원의 수용성 향상 평가알고리즘)

  • Lee, Se-Yeon;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.20-28
    • /
    • 2020
  • According to the 3020 RE (renewable energy) policy of the Korean Government, distributed generators, including PV (photovoltaic) and WP (wind power) systems, have been installed and operated in distribution systems. On the other hand, if large-scale PV systems are interconnected in a distribution system, the spread of PV systems may be postponed due to a reduction of the hosting capacity in PV systems because of the over-voltage phenomena at the customer end by violating the allowable voltage limits. Under these circumstances, this paper proposes an evaluation algorithm of the hosting capacity of a PV system based on the LDC (line drop compensation) method of SVR (step voltage regulator) to improve the hosting capacity when large-scale PV systems are installed in a distribution system. Moreover, this paper presents a modeling of a complex distribution system, which is composed of a large-scale PV system and SVR with the LDC method using PSCAD/EMTDC. The simulation results confirmed that the proposed algorithm and modeling are useful and practical tools for improving the hosting capacity of a PV system because the customer voltages are maintained within the allowable voltage limits even if 6.5[MW] of the PV system is installed in a distribution system with the LDC method of SVR.

A Study on Enhancement Method of Hosting Capacity for PV System Based on Primary Feeder Reconfiguration (배전선로 절체에 의한 태양광전원의 수용성 향상방안에 관한 연구)

  • Lee, Myung-Geun;Lee, Hu-Dong;Ferreira, Marito;Park, Ji-Hyun;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.239-249
    • /
    • 2019
  • Recently, the Korean government has implemented a policy to expand renewable energy sources. Large-scale PV systems are being actively interconnected with the distribution system. On the other hand, when a large-scale PV system is installed and operated, the customer voltages could violate the allowable voltage limit due to reverse power flow of the PV system. To overcome these problems, an enhancement method for hosting the capacity of the PV system in a distribution system is being actively conducted. Therefore, to improve the hosting capacity of the PV system, this paper proposes a model of a reconfiguration of the distribution system, which is composed of three sections and three connections based on PSCAD/EMTDC S/W, and proposes an evaluation algorithm for the feeder reconfiguration to maximize an adaption of the PV system. In addition, this paper presents the optimal method of the feeder reconfiguration section to evaluate the maximum capacity of the PV system to keep customer voltages within the allowable voltage limits based on various operation scenarios, such as the capacity of a PV system and section of feeder reconfiguration. From the simulation results based on the PSCAD/EMTDC modeling and evaluation algorithm, it was confirmed that they are a useful and practical tool to enhance hosting the capacity of a PV system in a distribution system.

Increasing Hosting Capacity of Distribution Feeders by Analysis of Generation and Consumption (배전선로 부하량 및 발전량 분석을 통한 신재생 접속허용용량 기준 상향에 대한 연구)

  • Kim, Seong-Man
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.295-309
    • /
    • 2019
  • This paper demonstrates that the verification and analysis of the increase of hosting capacity of distributed energy resources in distribution system for the high penetration of distributed energy resources. In the case of generally designed distribution feeders in South Korea, it can host up to 10 MVA of distributed energy resources and the over voltage due to reverse power flow is prohibited beyond the range by the law of electric utility. However, it should take into consideration that there are some factors of extra hosting capacity such as generation characteristics of distributed energy resources and minimum loads that always exist to distribution system. For these reason, we choose a specific distribution system hosted 10 MVA of distributed energy resources monitored by distribution system operator and verify the impact of increasing hosting capacity such as power flow and voltage profile of distribution system. By the result, we could find that it is possible to increase the hosting capacity and define the factors to expand the hosting capacity of distributed energy resources in distribution system.

Improvement of Variable Renewable Energy Penetration of Stand-Alone Microgrid Hosting Capacity by Using Energy-Storage-System Based on Power Sensitivity

  • CHOI, DongHee
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.91-101
    • /
    • 2020
  • Recently, the demand for high penetration of variable renewable energy (VRE) penetration in a power system is increased. In consequence, distribution systems including microgrids confront the increased installation of VRE-based distributed generation. Despite of the high demand of VRE-based distributed generation in a distribution system, the installation of photovoltaic (PV) system in a distribution system has been restricted by various problems. In other words, the hosting capacity for high VRE penetration in a distribution system is limited. This paper analyzes the improvements of hosting capacity VRE penetration of stand-alone microgrid (SAMG) with energy storage system (ESS) by considering virtual-slack (VS) control based on power sensitivity. With the pre-defined power sensitivity, the ESS operates as virtual slack in the SAMG by controlling its bus voltage and phase angle indirectly. Therefore, the ESS enables the increase of VRE penetration in the SAMG. The proposed VS control is realized by analyzing the ESS as a virtual slack in power flow analysis based on power sensitivity. Then its validity is demonstrated with the case study on the SAMG in South Korea with practical data.

Increasing Hosting Capacity in KEPCO Distribution Feeders (배전선로의 분산 전원 상시 연계용량 기준 상향 타당성 연구)

  • Cho, Sung-Soo;Sim, JunBo;Lim, Hyeon-Ok;Kim, HyeonJin;Kim, Seong-Man;Ju, Sang-Do;Song, JongHyup
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.311-321
    • /
    • 2019
  • With Korean Government's Renewable energy 3020 plan and 8th Basic plan for long-term power supply, renewable energy industries in Korea are active and catching attention from many relevant industry's relations. Especially with Interconnection guarantee policy established in Oct, 2016, DERs interconnection delay due to lack of allowable distribution hosting capacity is happening and reduction of reinforcement cost for distribution system where 70 % of DERs in South Korea are installed became one of important issues of KEPCO. Therefore, KEPCO needed to extract reasonable solutions to increase feasible hosting capacity of distribution feeders in order to reduce reinforcement cost under the condition of no matter in distribution system operation. This paper proposes feasible hosting capacity of distribution feeders that can be adopted and the status of DER installation in distribution system, PV output data, minimum load in distribution feeders as well as capacity of distribution lines have been investigated and analyzed in proof of the proposal.

A Study on Economic Evaluation Modeling of MVDC Distribution System for Hosting Capacity of PV System (태양광전원 수용을 위한 MVDC 배전망의 경제성평가 모델링에 관한 연구)

  • Lee, Hu-Dong;Kim, Ki-Young;Kim, Mi-Sung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Technologies for an MVDC(medium voltage direct current) distribution system are being considered as an effective alternative to overcome the interconnection delay issues of PV systems. However, the implementation of a DC distribution system might lead to economic problems because of the development of DC devices. Therefore, this paper deals with the scale of a PV plant based on its capacity and proposes hosting-capacity models for PV systems to establish a network to evaluate the feasibility of an MVDC distribution system. The proposed models can be classified as AC and DC distribution systems by the power-supply method. PV systems with hundreds of MW, dozens of MW, and a few MW can be categorized as large-scale, medium-scale, and small-scale models, respectively. This paper also performed modeling for an economic evaluation of MVDC distribution system by considering both the cost of AC and DC network construction, converter replacement, operation, etc. The profit was composed of the SMP and REC rate of a PV plant. A simulation for economic evaluation was done for the MVDC distribution system using the present worth and equal-principal costs repayment method. The results confirmed that the proposed model is a useful tool to evaluate economic issues of a DC distribution system.