• Title/Summary/Keyword: PV generation

Search Result 641, Processing Time 0.029 seconds

Inheritance of Resistance in Rice Cultivar IR50 to Bacterial Leaf Blight (수도 품종 IR50의 백엽고병 저항성 유전)

  • Park Sun Zik;Shin Mun Sik
    • Korean journal of applied entomology
    • /
    • v.23 no.2 s.59
    • /
    • pp.69-73
    • /
    • 1984
  • The inheritance of resistance in rice to bacterial blight (Xanthomonas campestris pv. oryzae) was studied in the $F_2$ generation of the cross between resistant cultivar IR50 and susceptible cultivar Zhu-Lian-Ai. Resistance was found to be controlled by two dominant complementary genes in IR50. The resistance gene(s) was linked with gene(s) for earliness with the recombination value of $6.1\~25.6\%$ in this cross.

  • PDF

A Path & Velocity Profile Planning Based on A* Algorithm for Dynamic Environment (동적 환경을 위한 A* 알고리즘 기반의 경로 및 속도 프로파일 설계)

  • Kwon, Min-Hyeok;Kang, Yeon-Sik;Kim, Chang-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.405-411
    • /
    • 2011
  • This paper presents a hierarchical trajectory planning method which can handle a collision-free of the planned path in complex and dynamic environments. A PV (Path & Velocity profile) planning method minimizes a sharp change of orientation and waiting time to avoid a collision with moving obstacle through detour path. The path generation problem is solved by three steps. In the first step, a smooth global path is generated using $A^*$ algorithm. The second step sets up the velocity profile for the optimization problem considering the maximum velocity and acceleration. In the third step, the velocity profile for obtaining the shortest path is optimized using the fuzzy and genetic algorithm. To show the validity and effectiveness of the proposed method, realistic simulations are performed.

Stability Enhancement of a Hybrid Micro-grid System in Grid Fault Condition

  • Ambia, Mir Nahidul;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Low voltage ride through capability augmentation of a hybrid micro-grid system is presented in this paper which reflects enhanced reliability in the system. The control scheme involves parallel connected multiple ac-dc bidirectional converters. When the micro-grid system is subjected to a severe voltage dip by any transient fault single power converter may not be able to provide necessary reactive power to overcome the severe voltage dip. This paper discusses the control strategy of additional power converter connected in parallel with main converter to support extra reactive power to withstand the severe voltage dip. During transient fault, when the terminal voltage crosses 90% of its pre-fault value, additional converter comes into operation. With the help of additional power converter, the micro-grid system withstands the severe voltage fulfilling the grid code requirements. This multiple converter scheme provides the micro-grid system the capability of low voltage ride through which makes the system more reliable and stable.

Validation of Generalized State Space Averaging Method for Modeling and Simulation of Power Electronic Converters for Renewable Energy Systems

  • Rimmalapudi, Sita R.;Williamson, Sheldon S.;Nasiri, Adel;Emadi, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.231-240
    • /
    • 2007
  • This paper presents an advanced modeling and simulation technique applied to DC/DC power electronic converters fed through renewable energy power sources. The distributed generation (DG) system at the Illinois Institute of Technology, which employs a phase-l system consisting of a photovoltaic-based power system and a phase-2 system consisting of a fuel cell based primary power source, is studied. The modeling and simulation of the DG system is done using the generalized state space averaging (GSSA) method. Furthermore, the paper compares the results achieved upon simulation of the specific GSSA models with those of popular computer aided design software simulations performed on the same system. Finally, the GSSA and CAD software simulation results are accompanied with test results achieved via experimentation on both, the PV-based phase-l system and the fuel cell based phase-2 power system.

A Study on the DC-Link Miniaturization and the Reduction of Output Current Distortion Rate by Reducing the Effect of 120 Hz Ripple Voltage on Photovoltaic Systems (태양광 발전 시스템의 120Hz 리플 전압 영향 감소를 통한 DC-Link 소형화와 출력 전류 왜곡률 감소에 관한 연구)

  • Song, Min-Geun;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.342-348
    • /
    • 2021
  • The PV module of solar power systems requires maximum power point tracking (MPPT) technique because the power-voltage and current-voltage characteristics vary depending on the surrounding environment. In addition, the 120 Hz ripple voltage on the DC-Link is caused by the imbalance of the system voltage and current. The effect of this 120 Hz ripple voltage reduces the efficiency of the power generation system by increasing the output current distortion rate. Increasing the capacity of DC-Link can reduce the 120 Hz ripple voltage, but this method is inefficient in price and size. We propose a technique that detects 120 Hz ripple voltage and reduces the effect of ripple voltage without increasing the DC-Link capacity through a controller. The proposed technique was verified through simulations and experiments using a 1 kW single-phase solar power system. In addition, the proposed technique's feasibility was demonstrated by reducing the distortion rate of the output current.

Calculation of Photovoltaic, ESS Optimal Capacity and Its Economic Effect Analysis by Considering University Building Power Consumption (대학건물의 전력소비패턴 분석을 통한 태양광, ESS 적정용량 산정 및 경제적 효과 분석)

  • Lee, Hye-Jin;Choi, Jeong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.207-217
    • /
    • 2018
  • Recently, the importance of energy demand management, particularly peak load control, has been increasing due to the policy changes of the Second Energy Basic Plan. Even though the installation of distributed generation systems such as Photovoltaic and energy storage systems (ESS) are encouraged, high initial installation costs make it difficult to expand their supply. In this study, the power consumption of a university building was measured in real time and the measured power consumption data was used to calculate the optimal installation capacity of the Photovoltaic and ESS, respectively. In order to calculate the optimal capacity, it is necessary to analyze the operation methods of the Photovoltaic and ESS while considering the KEPCO electricity billing system, power consumption patterns of the building, installation costs of the Photovoltaic and ESS, estimated savings on electric charges, and life time. In this study, the power consumption of the university building with a daily power consumption of approximately 200kWh and a peak power of approximately 20kW was measured per minute. An economic analysis conducted using these measured data showed that the optimal capacity was approximately 30kW for Photovoltaic and approximately 7kWh for ESS.

Parametric Analysis of Building Energy Impact of Semi-transparent PV (STPV의 건물 에너지 성능에 대한 파라메트릭 분석)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.35-42
    • /
    • 2018
  • Semi-transparent Photovoltaics (STPV) works as an exterior material replacing windows as well as functioning as a electricity generator. As a result, it also affects the building's heating, cooling and lighting loads. In this study, we used the concept of Net Electricity Benefit(NEB) to conduct a parametric analysis of building energy impact of STPV. The NEB of STPV is from $-1kWh/m^2$ to $6kWh/m^2$. Since NEB represents the amount of energy increase or decrease when STPV is applied compared to the standard window, a value of 0 or less means that the demand for building energy can be increased rather than applying a general window having high thermal performance and high visible light transmittance value. Therefore, it is necessary to perform a comprehensive performance evaluation considering both the performance evaluation based on the existing power generation performance and the influence on the building energy.

Negative evidence on the transgenerational inheritance of defense priming in Arabidopsis thaliana

  • Yun, Se-Hun;Noh, Bosl;Noh, Yoo-Sun
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.342-347
    • /
    • 2022
  • Defense priming allows plants to enhance their immune responses to subsequent pathogen challenges. Recent reports suggested that acquired resistances in parental generation can be inherited into descendants. Although epigenetic mechanisms are plausible tools enabling the transmission of information or phenotypic traits induced by environmental cues across generations, the mechanism for the transgenerational inheritance of defense priming in plants has yet to be elucidated. With the initial aim to elucidate an epigenetic mechanism for the defense priming in plants, we reassessed the transgenerational inheritance of plant defense, however, could not observe any evidence supporting it. By using the same dipping method with previous reports, Arabidopsis was exposed repeatedly to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) during vegetative or reproductive stages. Irrespective of the developmental stages of parental plants that received pathogen infection, the descendants did not exhibit primed resistance phenotypes, defense marker gene (PR1) expression, or elevated histone acetylation within PR1 chromatin. In assays using the pressure-infiltration method for infection, we obtained the same results as above. Thus, our results suggest that the previous observations on the transgenerational inheritance of defense priming in plants should be more extensively and carefully reassessed.

A Study on the Mechanical Reliability of Large-area Bi-facial Glass-to-glass Photovoltaic Modules (대면적 양면 태양광 모듈의 기계적 신뢰성 연구)

  • Yohan, Noh;Jangwon, Yoo;Jaehyeong, Lee
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.111-115
    • /
    • 2022
  • For the high efficiency of the photovoltaic module, a high-output solar cell, which is the basis of photovoltaic power generation, is required. As the light receiving area of the solar cell increases, the light receiving area of the photovoltaic module also increases. Accordingly, recent trend is to use large-area solar cells such as M6 and M8 instead of M2-based solar cells for manufacturing the photovoltaic module and a study on the mechanical stiffness of the module with increased size is required. In this study, a mechanical load test corresponding to IEC-61215 was performed among the reliability tests of large-area photovoltaic modules. In order to confirm the degree to which the mechanical load test affects the photovoltaic module, the output and EL images were checked by sequentially increasing the pressure by 600 Pa at a pressure of 2400 Pa. Also, factors such as output and efficiency of large-area photovoltaic modules were verified through mechanical load testing of actual large-area photovoltaic modules and the rate of change was very small at 1%.

An Analysis of Changes in Power Generation and Final Energy Consumption in Provinces to Achieve the Updated Nationally Determined Contribution (NDC) (국가 온실가스 감축목표(NDC) 상향안 달성을 위한 17개 광역시도별 발전 및 최종에너지 소비 변화 분석)

  • Minyoung Roh;Seungho Jeon;Muntae Kim;Suduk Kim
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.865-885
    • /
    • 2022
  • Korean government updated her Nationally Determined Contribution (NDC) in 2021 and announced the target and various measures for reductions. Among the many issues, final energy demand and renewable energy power mix for 17 provinces to achieve the target are being analyzed using GCAM-Korea. Simulation results show that final energy demand of 2030 is approximated at the similar level to that of 2018. This is being enabled by the conservation of coal with higher electrification especially in industry sector. Higher power demand with lower coal consumption in final energy consumption is shown to be provided by 33.1% of renewable, 24.6% of gas, and 18.0% of nuclear power generation in 2030. Meanwhile, the share of coal-fired power generation is expected to be reduced to 12.8%. Major future power provider becomes Gyeongbuk (Nuclear), Gyeonggi (Gas), Jeonnam (Nuclear, Gas) and Gangwon (PV, Wind), compared to one of current major power provider Chungnam (Coal). This analysis is expected to provide a useful insight toward the national and provincial energy and climate change policy.