• Title/Summary/Keyword: PV current

Search Result 500, Processing Time 0.031 seconds

The Effects of PV Cell's Electrical Characteristics for PV Module Application (태양전지의 전기적인 출력특성이 태양전지모듈에 미치는 영향)

  • Kim, Seung-Tae;Kang, Gi-Hwan;Park, Chi-Hog;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.36-41
    • /
    • 2008
  • In this paper, we study The Effects of PV Cell's Electrical Characteristics for PV Module Application. Photovoltaic module consists of serially connected solar cell which has low open circuit voltage and high short circuit current characteristics. The whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and Random. The PV module exposed about 35days, its the maximum power drop ratio was 4.282% minimum and 6.657% maximum. And PV module of low current characteristics has electrical stress from other modules. The solar cell temperature of PV module was higher compared to PV cell. To prevent early degradation, it is need to have attention to PV cell selection.

  • PDF

Variable Step Size Maximum Power Point Tracker Using a Single Variable for Stand-alone Battery Storage PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.218-227
    • /
    • 2011
  • The subject of variable step size maximum power point tracking (MPPT) algorithms has been addressed in the literature. However, most of the addressed algorithms tune the variable step size according to two variables: the photovoltaic (PV) array voltage ($V_{PV}$) and the PV array current ($I_{PV}$). Therefore, both the PV array current and voltage have to be measured. Recently, maximum power point trackers that arc based on a single variable ($I_{PV}$ or $V_{PV}$) have received a great deal of attention due to their simplicity and ease of implementation, when compared to other tracking techniques. In this paper, two methods have been proposed to design a variable step size MPPT algorithm using only a single current sensor for stand-alone battery storage PV systems. These methods utilize only the relationship between the PV array measured current and the converter duty cycle (D) to automatically adapt the step change in the duty cycle to reach the maximum power point (MPP) of the PV array. Detailed analyses and flowcharts of the proposed methods are included. Moreover, a comparison has been made between the proposed methods to investigate their performance in the transient and steady states. Finally, experimental results with field programmable gate arrays (FPGAs) are presented to verify the performance of the proposed methods.

Reconfiguration of PV Module Considering the Shadow Influence of Photovoltaic System (태양광 발전시스템의 그림자 영향을 고려한 PV 모듈의 재구성)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.36-44
    • /
    • 2013
  • This paper proposes the reconfiguration of PV module considering shadow influence of photovoltaic system. The PV system is consisted series-parallel connection of PV module. The voltage and current between PV modules become unbalance when shadow occurs to PV module. If shadow occurs to the series connection PV module, the output current is limited to current of shaded PV module. Also if shadow occurs to the parallel connection PV module, the output voltage is limited to voltage of shaded PV module. These problems are caused power loss. Therefore, the PV module in this paper consist using the fixed module and variable module by shaded conditions. The reconfiguration of PV module can compensates the shadow influence by changing connection of a variable module when shadow is occurred to PV module. A validity of the reconfiguration of PV module proposed in this paper proves through comparing with performance of conventional PV module.

The electrical effects of PV cell's short-circuit current difference for PV module application (태양전지의 단락전류 편차가 태양전지모듈에 미치는 전기적인 영향 분석)

  • Kim, Seung-Tae;Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.3-4
    • /
    • 2008
  • Photovoltaic module consists of serially connected solar cell which has low voltage characteristics. But, the other way, the whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and 5%. Using Light I-V and Dark I-V measurements, electrical characteristic parameters like Isc(short-circuit current), Voc(open-circuit voltage), Rs(series resistance), Rsh(shunt resistance) are analyzed. PV module of low current characteristics has electrical stress from other modules. And, such a module has a tendency of hot-spot suffering which leads degradation.

  • PDF

Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.54-64
    • /
    • 2015
  • This paper presents a current sensorless maximum power point tracking (MPPT) control method for dual-mode photovoltaic (PV) module-type interleaved flyback inverters (ILFIs). This system, called the MIC (Module Integrated Converter), has been recently studied in small PV power generation systems. Because the MIC is an inverter connected to one or two PV arrays, the power system is not affected by problems with other inverters. However, since the each PV array requires an inverter, there is a disadvantage that the initial installation cost is increased. To overcome this disadvantage, this paper uses a flyback inverter topology. A flyback inverter topology has an advantage in terms of cost because it uses fewer parts than the other transformer inverter topologies. The MPPT control method is essential in PV power generation systems. For the MPPT control method, expensive dc voltage and current sensors are used in the MIC system. In this paper, a MPPT control method without current sensor where the input current is calculated by a simple equation is proposed. This paper also deals with dual-mode control. Simulations and experiments are carried out to verify the performance and effectiveness of the proposed current sensorless MPPT control method on a 110 [W] prototype.

Photovoltaic Multi-string PCS with a Grid-connection (계통연계형 멀티스트링 태양광 발전 시스템)

  • Kwon, Jung-Min;Kim, Eung-Ho;Nam, Kwang-Hee;Kwon, Bong-Hwan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.69-76
    • /
    • 2007
  • In this paper, a PV multi-string PCS with a grid-connection is proposed. An improved MPPT algorithm for the PV multi-string PCS is suggested. Each PV string has its own MPP tracker and the proposed MPPT algorithm prevents LMPP tracking due to power ripple. In the PV PCS with single-phase inverter has a large current ripple at twice the grid frequency. The current ripple reduction algorithm without external component is suggested. Also, this paper proposes a simple control method to achieve sharing of the PV string voltage and current among the interleaved parallel boost converters. All algorithms and controllers are implemented on a single-chip microcontroller. Experimental results obtained on a 3kW prototype show high performance of the proposed PV multi-string PCS.

  • PDF

Photovoltaic Multi-string PCS with a Grid-connection (계통연계형 멀티스트링 태양광 발전 시스템)

  • Kwon, Jung-Min;Kim, Eung-Ho;Kwon, Bong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.255-258
    • /
    • 2007
  • In this paper, a PV multi-string PCS with a grid-connection is proposed. An improved MPPT algorithm for the PV multi-string PCS is suggested. Each PV string has its own MPP tracker and the proposed MPPT algorithm prevents LMPP tracking due to power ripple. In the PV PCS with single-phase inverter has a large current ripple at twice the grid frequency. The current ripple reduction algorithm without external component is suggested. Also, this paper proposes a simple control method to achieve sharing of the PV string voltage and current among the interleaved parallel boost converters. All algorithms and controllers are implemented on a single-chip microcontroller. Experimental results obtained on a 3kW prototype show high performance of the proposed PV multi-string PCS.

  • PDF

Mathematical Consideration on PV Cell Modeling (PV cell modeling의 수학적 고찰)

  • Park, Hyeonah;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • PV cell modeling is necessary both for software and hardware simulators in analyzing and testing the performance of PV generation systems. Unique I-V curve of a PV cell identifies its own characteristics by electrical equivalent model that is composed of diode constants ($I_o$, $v_t$), photo-generated current ($I_{ph}$), series resistance ($R_s$), and shunt resistance ($R_{sh}$). Photo-generated current can be easily estimated since it is proportional to irradiation level. However, other electrical parameters should be solved from the manufacturer's data sheet that is consisted with three remarkable operating points such as open circuit voltage ($V_{oc}$), short circuit current ($I_{sc}$), and maximum power voltage/current ($V_{MPP}/I_{MPP}$). This paper explains and analyzes mathematical process of a novel PV cell modeling algorithm that was proposed by the authors with the name of "K-algorithm".

Maximum power point tracking method for building integrated PV system (건물용 태양광 컨버터의 최대전력 추종 기법 개발)

  • Yu, Byung-Gyu;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.299-303
    • /
    • 2011
  • This paper proposes a novel sensorless maximum power point tracking (11PPT) algorithm for PV systems. The method is based on dividing the operating time into several intervals in which the PV terminals are short circuited in one interval and the calculated short-current of the PV is obtained and used to determine the optimum operating point where the maximum output power can be obtained. The proposed MPPT algorithm has been introduced into a current-controlled boost converter whose duty ratio is controlled to the maintain MPP condition. The same sequence is then repeated regularly capturing the PV maximum power. The main advantage of this method is eliminating the current sensor. Meanwhile, this MPPT algorithm reduces the power oscillations around the peak power point which occurs with perturbation and observation algorithms. In addition, the total cost will decrease by removing the current sensor from the PV side. Finally, simulation results confirm the accuracy of the proposed method.

  • PDF

Output Current DC offset Removal Method for Trans-less PV Inverter (무변압기형 태양광 인버터의 출력 전류 DC offset 제거 방법)

  • Hong, Ki-Nam;Choy, Ick;Choi, Ju-Yeop;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.255-261
    • /
    • 2012
  • Since PV PCS uses output current sensor for ac output current control, the sensor's sensing value includes unnecessary offset inevitably. If PV inverter is controlled by the included offset value, it's output current will generate DC offset. The DC offset of output current for trans-less PV inverter is fatal to grid, which results in saturating grid side transformer. Usually DSP controller of PV inverter reads several times sensing value during initial operation and, finally, it's average value is used for offset calibration. However, if temperature changes, the offset changes, too. And also, the switch device is not ideal, both each switching element of the voltage drop difference and on & off time delay difference generate DC offset. Thus, to compensate for deadtime and the switch voltage drop, feedback control by output current DC offset should be provided to compensate additional distortion of the output current. The validity of the proposed method is confirmed through PSIM simulation.