• 제목/요약/키워드: PV Panel Model

검색결과 15건 처리시간 0.021초

건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구 (A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application)

  • 민성혜;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제27권1호
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

군부대 유휴부지를 활용한 탄소 순 배출량 제로 달성을 위한 태양광 패널 및 수소 연료 저장시설의 설치 규모 예측 (A Study on Predicting Installation Scale of Photovoltaic Panels and Hydrogen Fuel Storage Facilities to Achieve Net Zero Carbon Emissions Exploiting Idle Sites of Military Bases)

  • 문동학;허지용
    • 한국군사과학기술학회지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2024
  • In this study, the scale of renewable photovoltaic(PV) panels and hydrogen fuel storage facilities required to achieve "net zero carbon emissions" in military facilities were predicted based on actual electricity consumption. It was set up to expect the appropriate installation size of PV panel and hydrogen fuel storage facility for achieving carbon neutrality, limited to the electricity consumption in the public sector, including national defense and social security administration in Yeongcheon. The experimental results of this paper are largely composed of two parts. First, representative meteorological factors were considered to predict solar power generation in the Yeongcheon area, and solar power generation was estimated through a multiple regression model using deep learning techniques. Second, the size of solar power generation facilities and hydrogen storage facilities in military bases was estimated with the amount of solar power generation and electricity consumption. As a result of this analysis, it was calculated that a site of 155.76×104 m2 for PV panels was needed and a facility capable of storing 27,657 kg of hydrogen gas was required. Through these results, it is meaningful to demonstrated the prospect that military units can lead the achievement of "carbon net zero 2050" by using PV panels and hydrogen fuel storage facilities on idle sites of military bases.

PV 시스템의 최대출력점 추정을 위한 알고리즘 개발 (Development of Algorithm for Maximum Power Point Tracking of PV system)

  • 박기태;고재섭;최정식;박병상;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.316-321
    • /
    • 2007
  • This paper is proposed a novel method to approximate the maximum power for a photovoltaic inverter system and tracking method. It is designed for power systems application and utilities. The proposed Maximum Power Point Tracking(MPPT) control has the advantage to provide a new simple way to approximate the optimal or rated voltage, the optimal or rated current and maximum power rating produced by a solar panel and the photovoltaic inverter. And this straightforward method will be named linear reoriented coordinates method(LRCM) with the advantage that Pmax and $V_{op}$ can be approximated using the satre variable as the dynamic model without using complicate approximations or Taylor series. Furthermore tracking method is improved over 50% photovoltaic efficiency. This paper is proposed MPPT using LRMC and tracking method using weather condition of domestic moderate program technique. This paper is proposed the experimental results to verify the effectiveness of the new methods.

  • PDF

폐채석장 부지 활용을 위한 유휴 공간의 태양광 발전 잠재량 분석 (Analysis of Photovoltaic Potential of Unused Space to Utilize Abandoned Stone Quarry)

  • 김한진;구지윤;박형동
    • 터널과지하공간
    • /
    • 제31권6호
    • /
    • pp.534-548
    • /
    • 2021
  • 서울 시내를 비롯한 국내 곳곳에 채굴이 종료된 다수의 폐채석장이 존재한다. 폐채석장은 낙석 등의 안전 문제와 공간 활용도 문제로 인해 항상 개발 대상 구역으로 거론되는데, 폐채석장 인근에 현재 국가적 지원을 받는 태양광 에너지 발전 가능성을 살펴보았다. 본 연구는 사당 IC 인근 폐채석장 부지를 대상으로, 사면에 직접 부착하는 방식과 낙석 방지 시설에 부착하는 방식 등 두 가지 상황에 대해 각각 분석했다. 관련 안전 기준 및 사례가 없어 지형 정보와 적절한 가정을 통해 사면에 직접 설치하는 태양광 패널에 대한 발전 잠재량을 추산했다. ArcGIS로 나타낸 DEM(Digital Elevation Model) 등 지형 고도 정보로부터 실제 폐채석장 절개면 부위의 표면적을 Python 프로그래밍을 통해 연산하여 설치 가능한 패널 용량과 각도를 계산하였다. 또, 낙석 방지 시설에 태양광 조사 방향으로 태양광을 설치하는 상황을 가정하여 가상의 방지벽에서의 발전 잠재량을 분석해보았다. 두 가지 방식의 발전량 도출은 모두 재생에너지 발전량 분석 프로그램 SAM(System Advisor Model)을 통해 진행되었다. 본 연구는 자원 생산이 끝난 폐채석장이 다시 한번 재생에너지 자원 생산지로 활용될 가능성을 보여준다.

A Study on Effects of Partial Shading on PV System applied to the Offshore Plant

  • Lee, Ji Young;Yang, Hyang Kweon;Oh, Jin Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.152-158
    • /
    • 2015
  • Unlike photovoltaic systems installed on land, photovoltaic systems applied to the offshore plant have the characteristic that is installed in a limited space. For single point mooring plant, it is advantageous in terms of a reliable power supply to be installed in different directions of photovoltaic panels, because it is not possible to identify the position of the sun by rotation of the plant itself. Differences of installation angle between photovoltaic panels make a difference of the intensity of radiation irradiated on each photovoltaic panel, and it brings loss of generation quantity due to the partial shading. In order to provide a photovoltaic system suitable for offshore plant, the modeling which contains multiple photovoltaic panels controlled by single controller is performed. Then, it was examined how the output characteristics of the photovoltaic system change about the difference of the intensity of radiation that varies depending on the altitude of the sun. Finally, through the simulation, a development model of the photovoltaic system which is suitable for offshore plant is suggested.