• Title/Summary/Keyword: PV/T collector

Search Result 11, Processing Time 0.022 seconds

Overall efficiency enhancement and cost optimization of semitransparent photovoltaic thermal air collector

  • Beniwal, Ruby;Tiwari, Gopal Nath;Gupta, Hari Om
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.118-128
    • /
    • 2020
  • A semitransparent photovoltaic-thermal (PV/T) air collector can produce electricity and heat simultaneously. To maximize the thermal and overall efficiency of the semitransparent PV/T air collector, its availability should be maximum; this can be determined through a Markov analysis. In this paper, a Markov model is developed to select an optimized number of semitransparent PV modules in service with five states and two states by considering two parameters, namely failure rate (λ) and repair rate (μ). Three artificial neural network (ANN) models are developed to obtain the minimum cost, minimum temperature, and maximum thermal efficiency of the semitransparent PV/T air collector by setting its type appropriately and optimizing the number of photovoltaic modules and cost. An attempt is also made to achieve maximum thermal and overall efficiency for the semitransparent PV/T air collector by using ANN after obtaining its minimum temperature and available solar radiation.

An Experimental Study of Performance Improvement of Air Type PV/T Collector Units (실험에 의한 공기식 태양광·열 복합 유닛의 성능 비교)

  • Kim, Jin-Hee;Yang, Yeon-Won;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.17-22
    • /
    • 2007
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The extraction of hot air from the space will enhance the performance of BIPV systems. The solar collector utilizing these two aspects is called PV/T(photovoltaic/thermal) solar collector. This paper compares the experimental performance of two different types of air type PV/T collector units: the base case of a collector unit with 10cm gap for forced ventilation and the other unit with copper pin attached to PV module to enhance its thermal performance. The experimental results shows that the base case unit had the overall efficiency of 41.9% and the improved unit with copper pin attached to PV module had 50.1% efficiency. For these air type PV/T units, the forced ventilation of the air space improved the electrical performance as well as the thermal performance.

The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module (사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석)

  • Jeong, Seon-Ok;Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF

Optimization of photovoltaic thermal (PV/T) hybrid collectors by genetic algorithm in Iran's residential areas

  • Ehyaei, M.A.;Farshin, Behzad
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.31-55
    • /
    • 2017
  • In the present study, PV/T collector was modeled via analysis of governing equations and physics of the problem. Specifications of solar radiation were computed based on geographical characteristics of the location and the corresponding time. Temperature of the collector plate was calculated as a function of time using the energy equations and temperature behavior of the photovoltaic cell was incorporated in the model with the aid of curve fitting. Subsequently, operational range for reaching to maximal efficiency was studied using Genetic Algorithm (GA) technique. Optimization was performed by defining an objective function based on equivalent value of electrical and thermal energies. Optimal values for equipment components were determined. The optimal value of water flow rate was approximately 1 gallon per minute (gpm). The collector angle was around 50 degrees, respectively. By selecting the optimal values of parameters, efficiency of photovoltaic collector was improved about 17% at initial moments of collector operation. Efficiency increase was around 5% at steady condition. It was demonstrated that utilization of photovoltaic collector can improve efficiency of solar energy-based systems.

An Experimental Study of Solar fir Roof Heating System With PVT Collector (공기식 집열 지붕 난방시스템의 실험 연구)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.232-237
    • /
    • 2008
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The extraction of hot air from the space will enhance the performance of BIPV systems. The solar collector utilizing these two aspects is called PV/T(photovoltaic/thermal) solar collector. This research is about the development of solar roof system with PV/T collector to apply into buildings. A test cell experiment was performed with the PVT roof installed: It found that the hot air supply from the PVT air collector contributed to increase the heating efficiency by 2 times and the electrical efficiency by about 8%.

  • PDF

A Study on the Reliability Assesment of Solar Photovoltaic and Thermal Collector System (태양광열 시스템의 신뢰성 평가에 관한 연구)

  • Park, Tae-Kook;Bae, Seung-Hoon;Kim, Sang-Kyo;Kim, Seon-Min;Kim, Dae-Hwan;Eom, Hak-Yong;Lee, Keun-Hui
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.49-64
    • /
    • 2020
  • Photovoltaic and Thermal collector (PV/T) systems are renewable energy devices that can produce electricity and heat energy simultaneously using solar panels and heat exchangers. Since PV/T systems are exposed to the outdoors, their reliability is affected by various environmental factors. This paper presents a reliability test for a PV/T system and evaluates the test results. The reliability assessment entails performance, environment, safety, and life tests. The factor that had the greatest influence on the life of the system was the hydraulic pressure applied to the heat exchanger. A test was conducted by repeatedly applying pressure to the PV/T system, and a reliability analysis was conducted based on the test results. As a result, the shape parameter (β) value of 5.6658 and the B10life 308,577 cycles at the lower 95% confidence interval were obtained.

An Experimental Study of a Water Type PV/Thermal Combined Collector Unit (액체식 PV/Thermal 복합모듈의 성능실험연구)

  • Lee, Hyun-Ju;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.105-111
    • /
    • 2007
  • Hybrid PV/Thermal systems consisting of photovoltaic module and thermal collector can produce the electricity and thermal energy. The solar radiation increases the temperature of PV modules, resulting in the decrease of their electrical efficiency. Accordingly hot air can be extracted from the space between the PV panel and roof, so the efficiency of the PV module increases. The extracted thermal energy can be used in several ways, increasing the total energy output of the system. This study describes a basic type of PV/T collector using water. In order to analyze the performance of the collector, the experiment was conducted. The result showed that the thermal efficiency was 17% average and the electrical efficiency of the PV module was about $10.2%{\sim}11.5%$, both depending on solar radiation, inlet water temperature and ambient temperature.

An Experimental Study of PV/Thermal Combined Collector Module (평판형 액체식 PVT 모듈의 성능 실험 분석)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.780-785
    • /
    • 2009
  • The photovoltaic/thermal collectors (PV/T collectors) combine the solar thermal collector and photovoltaic modules. They can produce thermal energy in the form of hot air or hot water, and converts solar radiation into electricity. The collecctors can improve the electrical performance of PV modules as the heat from the PV module carried away by the thermal part of the system keeping temperatures lower. The basic water cooled PVT collector has metallic water pipes attached to the back of a PV collector. There are main parameters affecting the performance (electrical and thermal) of PVT collectors. This paper analyzed the experimental performance of glazed water PVT module, considering the parameters of solar radiation, inlet water temperature and ambient temperature. It found that solar radiation is the dominant factor for the electrical performance of the collector, and for the thermal performance the inlet water temperature and ambient temperature appeared to be more related.

  • PDF

Development of Multistage Concentrating Solar Collector - I. Thermal performance of multistage cylindrical parabolique concentrating solar collector (다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器) 개발(開發)에 관(關)한 연구(硏究) - I. 다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 열적(熱的) 성능분석(性能分析))

  • Song, Hyun-Kap
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.3-14
    • /
    • 1986
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolique concentrating solar collector (M.C.P.C.S.C) was designed, which has several rows of parabolique reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The thermal performance of the M.C.P.C.S.C. newly designed in this study was analysed theoretically and experimentally. The results are summarized as follows: 1) prediction equation for outlet temperature, $T_o$, of heat transfer fluid and for the thermal efficiency, ${\eta}$, of the collector were derived as; o $$T_o=[C+B1_n(\frac{I_c(t)}{pv^3})]T_i$$ o $${\eta}=\frac{A}{A_c}\dot{m}[(C-1)+B1_n(E{\cdot}di^6\frac{I_c(t)}{\dot{m}^3})]\frac{T_i}{I_c(t)}$$ 2) When the insolation on the tilted solar collector surface, $I_c$, was $900-950W/m^2$ and the heat transfer fluid was not circulated in tubular absorber, the maximum temperature on the absorber surface was $100-118^{\circ}C$, this result suggested that the heat transfer fluid could be heated up to $98-116^{\circ}C$. The maximum temperature on the absorber surface was decreased with the increase of the collector shape factor, $L_p/L_w$ 3) There was a good agreement between the experimental and theoretical value of solar collector efficiency, ${\eta}$, which was proportional to the collector shape factor, $L_p/L_w$ 4) It is desirable to continue the study on the relationship between the collector shape factor, $L_p/L_w$, and the thermal efficiency of solar collector.

  • PDF

Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber (진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템)

  • Kim, Chang-Hee;Jeon, Dong-Hwan;Kong, San-Gun;Kim, Jong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF