• Title/Summary/Keyword: PUMP

Search Result 6,419, Processing Time 0.027 seconds

Analysis for bit synchronization using charge-pump phase-locked loop (비트 동기 Charge-pump 위상 동기 회로의 해석)

  • 정희영;이범철
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.14-22
    • /
    • 1998
  • The Mathematic model of bit synchronization charge-pump Phase Locked Loop (PLL) is presented which takes into account the aperiodic reference pulses and the leakage current of the loop filter. We derive theoreitcal static phase error, overload and stability of bit synchronization charge-pump PLL using presented model and compare it with one of the conventional charge-pump PLL model. We can analysis bit synchronization charge-pump PLL exactly because our model takes into account the leakage current of the loop filter and aperiodic input data which are the charateristics of bit synchronization charge-pump PLL. We also verify it using HSPICE simulation with a bity synchronizer circuit.

  • PDF

A CMOS Charge Pump Circuit with Short Turn-on Time for Low-spur PLL Synthesizers

  • Sohn, Jihoon;Shin, Hyunchol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.873-879
    • /
    • 2016
  • A charge pump circuit with very short turn-on time is presented for minimizing reference spurs in CMOS PLL frequency synthesizers. In the source switching charge pump circuit, applying proper voltages to the source nodes of the current source FETs can significantly reduce the unwanted glitch at the output current while not degrading the rising time, thus resulting in low spur at the synthesizer output spectrum. A 1.1-1.6 GHz PLL synthesizer employing the proposed charge pump circuit is fabricated in 65 nm CMOS. The current consumption of the charge pump is $490{\mu}A$ from 1 V supply. Compared to the conventional charge pump, it is shown that the reference spur is improved by dB through minimizing the turn-on time. Theoretical analysis is described to show that the measured results agree well with the theory.

A Study on the Analysis of Cavitation in Intake Pump (취수펌프에서의 캐비테이션 분석에 관한 연구)

  • Kim, Yong-Yeol;Cha, In-Ho;Lee, Je-Geun;Kwon, Gi-Bum;Lee, Jong-Ik;Kim, Han-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.144-147
    • /
    • 2008
  • Intake pump for waterworks is badly damaged by a small amount of cavitation because of variable water quality and severe operation conditions. In general, the required NPSH for reduced cavitation can be provided by inlet condition, supply air, change pump and inducer. But once the pump has been built and installed there is little that can be done to reduce cavitation damage. In this study, we analysed the cavitation of paldang intake pump and intended to avoid the same phenomena.

  • PDF

A Study on the Measurement System for Analyzing a Pump Efficiency (펌프효율분석을 위한 측정시스템에 관한 연구)

  • Bae, Cherl-O;Vuong, Duc-Phuc;Jung, Hye-Youn;Lee, Hwi-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.129-129
    • /
    • 2012
  • Pumps are used widely in industry, the commercial sector and ships. A poorly selected pump or a pump that does not run at optimum design duty point is a classic symbol of wasted energy and money. It, therefore, becomes important to evaluate the efficiency of these pumps. This paper analyzes traditional technique and instrument to measure some parameters needed to calculate a pump efficiency. The pump efficiency measuring instrument (PEMI) was made and tested on real pump systems. It has been giver the accurate results compared with performance curve given by pump maker.

  • PDF

Understanding Ion Pump Emissions : Classification, Source Identification and Elimination of Emissions from Ion Pumps

  • Wynohrad, Tony
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.340-344
    • /
    • 2014
  • Ion pumps continue to be a staple in ultra-high vacuum (UHV) applications. Since their adoption as a primary UHV pump in the 1960's, it has been known that a variety of particles can emanate from within the ion pump and cause undesirable effects on current measurements and optics components. Historically the solution has been baffling and shielding which results in longer conductance paths to the ion pump. Those solutions can work, but require a larger pump and more vacuum plumbing to compensate for conductance losses. The first step was to fully understand the nature of the particles and their charges. Once those were characterized options for emissions reduction were evaluated. It was determined that an efficient design of shielding near the source of the particle generation site was the most cost effective solution. With a slight modification to the chamber of a small ion pump, internal shielding was developed that reduced the emissions by a factor of up to 1000 times.

Effect of The Impeller Discharge Angle on the Performance of a Spurt Vacuum Pump

  • Lee, Ji-Gu;Kim, Youn-Jea
    • Applied Science and Convergence Technology
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The spurt vacuum pump is widely used to transfer sludge and slurry, and to control flow rate in a variety of processing fields, such as the oil, chemical, and fiber industries. The efficiency of the pump depends on the design parameters of the impeller, such as the number of blades, and the blade angle. In this study, the effect of the configuration of the impeller discharge angle of a spurt vacuum pump, which influences total head, shaft power, and efficiency, was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. In addition, the performance of the pump was evaluated on the basis of the correlations between the total head, pump efficiency, and pressure distribution.

Effective Ionic Wind Generation of a Surface Discharge Type Ionic Air Pump (연면 방전형 이온풍 발생장치의 고효율 풍속발생)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1594-1598
    • /
    • 2008
  • The ionic air pump can be used towards the thermal management of micro-electronic devices, since the size of pump can be reduced to micrometer orders. In addition, an air pump allows air flow control and generation with low noise and no moving parts. These ideal characteristics of the pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities of the pumps. In this study a surface discharge type air pump, with a third electrode, has been investigated by focusing on elevating the wind velocity and efficiency. As a result, the enhanced ionic wind velocity could be obtained with the third electrode of the proposed air pump.

Development of Agent Module of Integrated Design System for Centrifugal Pump Design Optimization (원심펌프 최적설계를 위한 통할설계 시스템의 Agent 모듈 개발)

  • Choi, Bum-Seog;Kim, Myung-Bae;Lee, Kong-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.491-496
    • /
    • 2005
  • A pump design system was constructed by several integrating in-house programs and commercial softwares to design and evaluate centrifugal pumps. An agent-based prototype framework has been developed for collaborative design and optimization of a centrifugal pump. This paper introduces the feasible technology needed to construct a pump design system based on software agents. The integrated design system, developed in the present study, was used in designing a centrifugal pump and modifying its impeller shape by using optimization processes to increase the pump performance.

  • PDF

Qualification Test of Main Coolant Pump for an Integral Type Reactor (일체형원자로 주냉각재펌프의 검증시험)

  • Park, Sang-Jin;Yoon, Eui-Soo;Heo, Pil-Woo;Kim, Duck-Jong;Oh, Hyoung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.509-514
    • /
    • 2005
  • Main coolant pump (MCP) is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel rods and steam generators in an integral type reactor. The reactor is designed to operate under condition of 310 oC and 14.7 MPa. Thus MCP has to be tested under same operating condition as reactor design condition in order to verify its performance and safety. In present work, a test loop to simulate real operating situation of the reactor has been designed and constructed to test MCP. And then, as a part of qualification test, canned motor functional test and pump hydraulic performance test have been carried out upon a prototype MCP. Canned motor efficiency and pump hydraulic characteristics including homologous curves and NPSH curves were obtained from the qualification test.

  • PDF

Development of Vertical Barrel Type Multistage Pump (비속도 150급 수직배럴형 다단 원심펌프 개발)

  • Yoo, Il-Su;Park, Mu-Ryong;Hwang, Soon-Chan;Kim, Sung-Ki;Yoon, Eui-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • A vertical-axis multistage pump with low specific speed was developed, satisfying performance requirements such as flow rate, total head, and NPSH. The developed pump was designed through conceptual design, configuration design, and performance analysis by CFD which were established in KIMM. The prototype pump's mechanical wholesomeness besides hydraulic performances were verified by running test, performance test, and reliability test.