• 제목/요약/키워드: PUMA 560

검색결과 47건 처리시간 0.023초

홉필드 신경 회로망을 이용한 로보트 매니퓰레이터의 최적시간 경로 계획 (Planning a Time-optimal path for Robot Manipulator Using Hopfield Neural Network)

  • 조현찬;김영관;전홍태;이홍기
    • 대한전자공학회논문지
    • /
    • 제27권9호
    • /
    • pp.1364-1371
    • /
    • 1990
  • We propose a time-optimal path planning scheme for the robot manipulator using Hopfield neural network. The time-optimal path planning, which can allow the robot system to perform the demanded tasks with a minimum execution time, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computational burden and thus limits the on-line application. One way to avoid such a difficulty is to apply the neural networke technique, which can allow the parallel computation, to the minimum time problem. This paper proposes an approach for solving the time-optimal path planning by using Hopfield neural network. The effectiveness of the proposed method is demonstrarted using a PUMA 560 manipulator.

  • PDF

퍼지논리와 다층 신경망을 이용한 로보트 매니퓰레이터의 위치제어 (Position Control of the Robot Manipulator Using Fuzzy Logic and Multi-layer neural Network)

  • 김종수;이홍기;전홍태
    • 전자공학회논문지B
    • /
    • 제28B권11호
    • /
    • pp.934-940
    • /
    • 1991
  • The multi-layer neural network that has broadly been utilized in designing the controller of robot manipulator possesses the desirable characteristics of learning capacity, by which the uncertain variation of the dynamic parameters of robot can be handled adaptively, and parallel distributed processing that makes it possible to control on real-time. However the error back propagation algorithm that has been utilized popularly in the learning of the multi-layer neural network has the problem of its slow convergencs speed. In this paper, an approach to improve the convergence speed is proposed using fuzzy logic that can effectively handle the uncertain and fuzzy informations by linguistic level. The effectiveness of the proposed algorithm is demonstrated by computer simulation of PUMA 560 robot manipulator.

  • PDF

외란관측기를 이용한 새로운 시각구동방법 (A Novel Visual Servoing Method involving Disturbance Observer)

  • 이준수;서일홍;유범재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2312-2314
    • /
    • 1998
  • To improve the visual servoing performance, several strategies were proposed in the past such as redundant feature points, using a point with different height and weighted selection of image features. The performance of these visual servoing methods depends on the configuration between the camera and object. And redundant feature points require much computation efforts. This paper proposes the visual servoing m based on the disturbance observer, which compe the upper off-diagonal component of image fe Jacobian to be null. The performance indices su sensitivity for a measure of richness, sensitiv the control to noise, and controllability are sho improved when the image feature Jacobian is giv a block diagonal matrix. Computer simulation carried out for a PUMA560 robot and show results to verify the effectiveness of the pro method.

  • PDF

퓨리에 급수를 이용한 매니퓰레이터 경로 계획 (Path Planning for Manipulators Using Fourier Series)

  • 원종화;최병욱;정명진
    • 전자공학회논문지B
    • /
    • 제29B권10호
    • /
    • pp.27-36
    • /
    • 1992
  • This paper proposes a numerical method of motion planning for manipulators using Foruier series. For a redundant manipulator, we predetermine the trajectories of redundant joints in terms of the Nth partial sum of the fourier series. then the optimal coefficients of the fourier series are searched by the Powell's method. For a nonredundant or redundant manipulator, CS02T-continuous smooth joint trajectory for a point-to-point task can be obtained while considering the frequency response. We apply the proposed method to the 3-link planar manipulator and the PUMA 560 manipulator. To show the validity of the proposed method, we analyze solutions by the Fast Fourier Transform (FFT). Also, several features are discussed to obtain an optimal solution.

  • PDF

로보트의 힘제어를 이용한 윤곽 추적, 삽입 및 그라인딩 작업의 구현에 관한 연구 (A Study on the Implementation of Edge-Following Insertion and grinding Tasks Using Robot Force Control)

  • 정재욱;이범희;고명삼
    • 대한전기학회논문지
    • /
    • 제40권2호
    • /
    • pp.207-216
    • /
    • 1991
  • In the case that the robot manipulator should respond to the variance and uncertainty of the environment in performing preforming precision tasks, it is indispensable that the robot utilizes the various sensors for intrlligence. In this paper, the robot force control method is implemented with a force/torque sensor, two personal computers, and a PUMA 560 manipulator for performing the various application tadks. The hybrid position/force control method is used to control the force and position axis separately. An interface board is designed to read the force/torque sensor output into the computer. Since the two computers should exchange the information quickly, a common memory board is designed. Before the algorithms of application tasks are developed, the basic force commands must be supplied. Thus, the MOVE-UNTIL command is used at the discrete time instant and, the MOVE-COMPLY is used at the continuous time instant for receiving the force feedback information. Using the two basic force commands, three application algorithms are developed and implemented for edge-following, insertion, and grinding tasks.

  • PDF

요청한 작업 경로에 따른 매니퓰레이터의 기구학적 변수 선정을 위한 군집 지능 기반 최적 설계 (Swarm Intelligence-based Optimal Design for Selecting the Kinematic Parameters of a Manipulator According to the Desired Task Space Trajectory)

  • 이준우
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.504-510
    • /
    • 2016
  • Robots are widely utilized in many fields, and various demands need customized robots. This study proposes an optimal design method based on swarm intelligence for selecting the kinematic parameter of a manipulator according to the task space trajectory desired by the user. The optimal design method is dealt with herein as an optimization problem. This study is based on swarm intelligence-based optimization algorithms (i.e., ant colony optimization (ACO) and particle swarm optimization algorithms) to determine the optimal kinematic parameters of the manipulator. The former is used to select the optimal kinematic parameter values, whereas the latter is utilized to solve the inverse kinematic problem when the ACO determines the parameter values. This study solves a design problem with the PUMA 560 when the desired task space trajectory is given and discusses its results in the simulation part to verify the performance of the proposed design.

Robot Manipulator Visual Servoing via Kalman Filter- Optimized Extreme Learning Machine and Fuzzy Logic

  • Zhou, Zhiyu;Hu, Yanjun;Ji, Jiangfei;Wang, Yaming;Zhu, Zefei;Yang, Donghe;Chen, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2529-2551
    • /
    • 2022
  • Visual servoing (VS) based on the Kalman filter (KF) algorithm, as in the case of KF-based image-based visual servoing (IBVS) systems, suffers from three problems in uncalibrated environments: the perturbation noises of the robot system, error of noise statistics, and slow convergence. To solve these three problems, we use an IBVS based on KF, African vultures optimization algorithm enhanced extreme learning machine (AVOA-ELM), and fuzzy logic (FL) in this paper. Firstly, KF online estimation of the Jacobian matrix. We propose an AVOA-ELM error compensation model to compensate for the sub-optimal estimation of the KF to solve the problems of disturbance noises and noise statistics error. Next, an FL controller is designed for gain adaptation. This approach addresses the problem of the slow convergence of the IBVS system with the KF. Then, we propose a visual servoing scheme combining FL and KF-AVOA-ELM (FL-KF-AVOA-ELM). Finally, we verify the algorithm on the 6-DOF robotic manipulator PUMA 560. Compared with the existing methods, our algorithm can solve the three problems mentioned above without camera parameters, robot kinematics model, and target depth information. We also compared the proposed method with other KF-based IBVS methods under different disturbance noise environments. And the proposed method achieves the best results under the three evaluation metrics.