• 제목/요약/키워드: PUMA 560

검색결과 47건 처리시간 0.019초

A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control

  • Yildirim Sahin;Eski Ikbal
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.917-928
    • /
    • 2006
  • In recent decades, Artificial Neural Networks (ANNs) have become the focus of considerable attention in many disciplines, including robot control, where they can be used to solve nonlinear control problems. One of these ANNs applications is that of the inverse kinematic problem, which is important in robot path planning. In this paper, a neural network is employed to analyse of inverse kinematics of PUMA 560 type robot. The neural network is designed to find exact kinematics of the robot. The neural network is a feedforward neural network (FNN). The FNN is trained with different types of learning algorithm for designing exact inverse model of the robot. The Unimation PUMA 560 is a robot with six degrees of freedom and rotational joints. Inverse neural network model of the robot is trained with different learning algorithms for finding exact model of the robot. From the simulation results, the proposed neural network has superior performance for modelling complex robot's kinematics.

Online Trajectory Planning for a PUMA Robot

  • Kang, Chul-Goo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.16-21
    • /
    • 2007
  • Robotic applications, such as automatic fish cutting, require online trajectory planning because the material properties of the object, such as the bone or flesh conditions, are not known in advance. Different trajectories are required when the material properties vary. An effective online trajectory-planning algorithm is proposed using quaternions to determine the position and orientation of a robot manipulator with a spherical wrist. Quaternions are free of representation singularities and permit computationally efficient orientation interpolations. To prevent singular configurations, the exact locations of the kinematic singularities of the PUMA 560 manipulator are derived and geometrically illustrated when a forearm offset exists and the third link length is not zero.

Two-dimensional object contour tracking by a force controlled manipulator

  • Choi, Myoung-Hwan;Ko, Myoung-Sam;Lee, Bum-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.892-897
    • /
    • 1987
  • The ability of a robotic manipulator to recognize the shape of an object by feeling its band around the object is useful in many applications. Two-dimensional object contour tracking by force feedback is described. The system consists of IBM PC/AT, PUMA 560 manipulator, PUMA controller and a tip sensor. Position control is accomplished by using VAL command and the unmodified PUMA controller. A contour tracking algorithm is developed and tested on three different types of objects. The experimental results show that the objects' shapes can be successfully identified.

  • PDF

The teleautonomous control of an integrated FRHC-PUMA telerobot control system

  • Lee, Jin-S.;Kan, Edwin-P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.974-979
    • /
    • 1990
  • The system discussed in this paper is an integrated stand-alone system with the full functional capabilities required of a telerobot system. It is complete with a force-reflecting 6-DOF hand controller, driving a PUMA 560 or 762 robot, with an integrated force-torque sensing wrist sensor and servo-driven parallel jaw gripper. A mix of custom and standard electronics, distributed computers and microprocessors, with embedded and downloadable software, have been integrated into the system, giving rise to a powerful and flexible teleautonomous control system.

  • PDF

On the Voltage-Based Control of Robot Manipulators

  • Fateh, Mohammad Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.702-712
    • /
    • 2008
  • This paper presents a novel approach for controlling electrically driven robot manipulators based on voltage control. The voltage-based control is preferred comparing to torque-based control. This approach is robust in the presence of manipulator uncertainties since it is free of the manipulator model. The control law is very simple, fast response, efficient, robust, and can be used for high-speed tracking purposes. The feedback linearization is applied on the electrical equations of the dc motors to cancel the current terms which transfer all manipulator dynamics to the electrical circuit of motor. The control system is simulated for position control of the PUMA 560 robot driven by permanent magnet dc motors.

로보트 매니퓨레이타 제어를 위한 광학적 근접센서의 설계 및 그 응용 (Optical proximity sensor design and its application to PUMA 560 robot manipulator)

  • 고명삼;송진일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.49-54
    • /
    • 1986
  • In this paper we deal with a method of controlling PUMA 560 robot manipulator using a newly developed optical proximity sensor and the PDP-11/44 computer. The sensor output is different somewhat depending on an color of the object. The range of sensing vary from 38.4mm to 109.5mm for a real object, 39mm to 111.65mm for yellow, and 40.55mm to 107.25mm for blue. When an obstacle is encountered on the path of end-effector the system acknowledger immediatly the existence of the obstacle : and holds the motion of arm at a given distance. And also the system is capable of making the end effector avoid the obstacle automatically and keep on its motion.

  • PDF

PC를 이용한 PUMA 로봇의 제어시스템 구성 (A Design of the PUMA Robot Control System Using a PC)

  • 김대원;이원식;경계현;이상무;고명삼;이범희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.980-985
    • /
    • 1988
  • In this paper, a control system of the PUMA 560 robot manipulator using a PC (Personal Computer) is presented. The hardware of the designed control system is composed of IBM-PC/AT, interface board, selection board, interrupt generating circuit, and the servo control unit of the PUMA controller. A robot control library is developed using assembly and C language, and is composed of several low-level functions and arm interface routines, world model routines, arm kinematics routines, and motion command service routines. Using the designed library, joint interpolated motion and Cartesian interpolated motion of the PUMA robot manipulator are realized. In the future, our system is expected to be a very helpful basis and a useful tool for developing various control algorithms of robot manipulator using sensory information.

  • PDF

퍼지논리와 다층 신경망을 이용한 로봇 매니퓰레이터의 위치제어 (Position Control of The Robot Manipulator Using Fuzzy Logic and Multi-layer Neural Network)

  • 김종수;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제2권1호
    • /
    • pp.17-32
    • /
    • 1992
  • 로보트 매니퓰레이터의 신경 제어기 구성에 널리 사용하는 다층 신경회로망은 로보트의 불확실한 동적 파라메터 변화에 대한 강건한 학습 적응능력, 그리고 병렬 처리를 통한 실시간 제어등의 장점들을 갖고있다. 그러나 대표적인 학습방법인 오차 역전파(error back propagation) 알고리즘은 그 학습 속도가 느리다는 문제점을 갖는다. 본 논문에서는 불확실하고 애매한 정보를 언어적인 방법에 의해 효율적으로 처리할 수 있는 퍼지 논리 (fuzzy logic)를 도입하여 로보트 매니퓰레이터 신경 제어기의 학습 속도를 개선하기위한 한 방법을 제안한다. 제안된 제어기의 효용성은 PUMA 560 로보트의 모의 실험을 통해 입증된다.

  • PDF

두 대의 산업용 로보트를 이용한 협력 작업의 최적 시간 제어 (Optimal-Time Synthesis for the Two Coordinated Robot Manipulators)

  • 조현찬;전홍태
    • 대한전자공학회논문지
    • /
    • 제26권10호
    • /
    • pp.1471-1478
    • /
    • 1989
  • The optimal-time control of the coordinated motion of two robot manipulators may be of consequence in the industrial automation. In this paper two robot manipulators garsping a common object are assumed to travel a specified Cartesian path and the method how to derive the optimal-time solution is explained. This approach is based on parameterizing the corresponding patn and utilizing the phase-plame technique in the trajectory planning. Also the torques supplied by the actuators are assumed to have some constant bounds. The effectiveness of this approach is demonstrated by a computer simulation using a PUMA 560 manipulator.

  • PDF