• Title/Summary/Keyword: PTV

Search Result 394, Processing Time 0.024 seconds

CORRELATION STUDY OF THE MEASURED TUMBLE RATIOS USING THREE DIFFERENT METHODS: STEADY FLOW RIG; 2-DIMENSIONAL PIV; AND 3-DIMENSIONAL PTV WATER FLOW RIG

  • Kim, M.J.;Lee, S.H.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.441-448
    • /
    • 2006
  • In-cylinder flows such as tumble and swirl play an important role on the engine combustion efficiencies and emission formations. The tumble flow, which is dominant in current high performance gasoline engines, is able to effect fuel consumptions and emissions under a partial load condition in addition to the volumetric efficiency under a wide open throttle condition. Therefore, it is important to optimize the tumble ratio of a gasoline engine for better fuel economy, lower emissions, and maximum volumetric efficiency. First step for optimizing a tumble ratio is to measure a tumble ratio accurately. For a tumble ratio measurement, many different methods have been developed and used such as steady flow rig, PIV, PTV, and LDV. However, it is not well known about the relations among the measured tumble ratios using different methods. The purpose of this research is to correlate the tumble ratios measured using three different methods and find out merits and demerits of each measurement method. In this research the tumble flow was measured, compared, and correlated using three different measurement methods at the same engine: steady flow rig; 2-dimensional PIV; and 3-dimensional PTV water flow rig.

Simultaneous measurement of velocity and temperature fields in micro-scale flow and its application to electrokinetic flow (마이크로 스케일 유동에서의 속도장 온도장 동시 측정 기법과 동전기 유동에의 적용)

  • Lee, Beom-Joon;Jin, Song-Wan;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2585-2590
    • /
    • 2007
  • In this paper, a technique of simultaneously measuring the velocity and the temperature in micro-scale flow is proposed. This method uses particle tracking velocimetry (PTV) for measuring the velocity and laser induced fluorescence (LIF) for measuring the temperature. To measure the accurate velocity and temperature, images for PTV and for LIF are separated by using two light sources and a shutter which is synchronized with a camera. By using only one camera, measurement system can be simplified and the error from complicate optical system can be minimized. Error analyses regarding the concentrations of fluorescent dye and particle and the light source fluctuation are also conducted. It is found that the error of the temperature and the velocity highly depends on the concentration of fluorescent particles which are used for PTV. This technique is applied to the simultaneous measurement of the velocity and the temperature in the electrokinetic flow. It is found that the velocity and temperature vary with the electric field strength and the concentration of electrolyte.

  • PDF

Simultaneous Measurement of Velocity and Temperature Fields in Micro-Scale Flow and Its Application to Electrokinetic Flow (마이크로 스케일 유동에서의 속도장 온도장 동시 측정 기법과 동전기 유동에의 적용)

  • Lee, Beom-Joon;Jin, Song-Wan;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.644-652
    • /
    • 2007
  • In this paper, a technique of simultaneously measuring the velocity and the temperature in micro-scale flow is proposed. This method uses particle tracking velocimetry (PTV) for measuring the velocity and laser induced fluorescence (LIE) for measuring the temperature. To measure the accurate velocity and temperature, images for PTV and for LIE are separated by using two light sources and a shutter which is synchronized with a camera. By using only one camera, measurement system can be simplified and the error from complicate optical system can be minimized. Error analyses regarding the concentrations of fluorescent dye and particle and the light source fluctuation are also conducted. It is found that the error of the temperature and the velocity highly depends on the concentration of fluorescent particles which are used for PTV. This technique is applied to the simultaneous measurement of the velocity and the temperature in the electrokinetic flow. It is found that the velocity and temperature vary with the electric field strength and the concentration of electrolyte.

Dosimetric Comparison between Intensity Modulated Radiotherapy and 3 Dimensional Conformal Radiotherapy in the Treatment of Rectal Cancer

  • Simson, David K;Mitra, Swarupa;Ahlawat, Parveen;Sharma, Manoj Kumar;Yadav, Girigesh;Mishra, Manindra Bhushan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4935-4937
    • /
    • 2016
  • Objective: To compare dosimetric parameters of 3 dimensional conformal radiotherapy (3 DCRT) and intensity modulated radiotherapy (IMRT) in terms of target coverage and doses to organs at risk (OAR) in the management of rectal carcinoma. Methods: In this prospective study, conducted between August 2014 and March 2016, all patients underwent CT simulation along with a bladder protocol and target contouring according to the Radiation Therapy Oncology Group (RTOG) guidelines. Two plans were made for each patient (3 DCRT and IMRT) for comparison of target coverage and OAR. Result: A total of 43 patients were recruited into this study. While there were no significant differences in mean Planning Target Volume (PTV) D95% and mean PTV D98% between 3 DCRT and IMRT, mean PTV D2% and mean PTV D50% were significantly higher in 3 DCRT plans. Compared to IMRT, 3 DCRT resulted in significantly higher volumes of hot spots, lower volumes of cold spots, and higher doses to the entire OAR. Conclusion: This study demonstrated that IMRT achieves superior normal tissue avoidance (bladder and bowel) compared to 3 DCRT, with comparable target dose coverage.

Velocity Field Measurement of Flow Around a Surface-Mounted Vertical Fence Using the Two-Frame PTV System (2-프레임 PTV를 이용한 수직벽 주위 유동장 해석)

  • Baek, Seung-Jo;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1340-1346
    • /
    • 1999
  • The turbulent shear flow around a surface-mounted vertical fence was investigated using the two-frame PTV system. The Reynolds number based on the fence height(H) was 2950. From this study, it is revealed that at least 400 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 100 field data are sufficient for the time-averaged mean velocity information. Various turbulence statistics such as turbulent intensities, turbulence kinetic energy and Reynolds shear stress were calculated from 700 instantaneous velocity vector fields. The fence flow has an unsteady recirculation region behind the fence, followed by a slow relaxation to the flat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about 11.2H. There exists a region of negative Reynolds shear stress near the fence top due to the highly convex (stabilizing) streamline-curvature of the upstream flow. The large eddy structure in the separated shear layer seems to have significant influence on the development of the separated shear layer and the reattachment process.

A Study on the Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump by PTV (PTV 계측법에 의한 극저비속도 원심펌프의 내부유동특성에 관한 연구)

  • Choi, Young-Do;Matsui, Jun;Kurokawa, Junichi;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.9-18
    • /
    • 2006
  • In the range of very low specific speed ($n_s<0.25$, non-dimensional), the performance of a centrifugal pump is much different from that of a centrifugal pump of normal ns and the efficiency of the pump drops rapidly with the decrease of $n_s$. In order to examine the reason of unstable performance characteristics of the very low $n_s$- centrifugal pump, the internal flow of the pump with a semi-open impeller is measured by a PTV(Particle Tracking Velocimetry) system. The purpose of this study is to make clear the internal flow characteristics and to obtain basic knowledge of the pump performance. The results show that the leakage flow through tip clearance give a strong effect on the flow pattern of impeller passage. A large vortex in the impeller passage and a strong reverse flow at impeller outlet are formed in the range of small flow rates, and the vortex and the reverse flow together reduce the absolute tangential velocity at the impeller outlet and cause the performance instability.

Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry (단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석)

  • Lee, Chang-Sik;Lee, Gi-Hyeong;Im, Gyeong-Su;Jeon, Mun-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.

Feasibility of Shrinking Field Radiation Therapy through 18F-FDG PET/CT after 40 Gy for Stage III Non-Small Cell Lung Cancers

  • Ding, Xiu-Ping;Zhang, Jian;Li, Bao-Sheng;Li, Hong-Sheng;Wang, Zhong-Tang;Yi, Yan;Sun, Hong-Fu;Wang, Dong-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.319-323
    • /
    • 2012
  • Objective: To explore the feasibility of shrinking field technique after 40 Gy radiation through 18F-FDG PET/CT during treatment for patients with stage III non-small cell lung cancer (NSCLC). Methods: In 66 consecutive patients with local-advanced NSCLC, 18F-FDG PET/CT scanning was performed prior to treatment and repeated after 40 Gy. Conventionally fractionated IMRT or CRT plans to a median total dose of 66Gy (range, 60-78Gy) were generated. The target volumes were delineated in composite images of CT and PET. Plan 1 was designed for 40 Gy to the initial planning target volume (PTV) with a subsequent 20-28 Gy-boost to the shrunken PTV. Plan 2 was delivering the same dose to the initial PTV without shrinking field. Accumulated doses of normal tissues were calculated using deformable image registration during the treatment course. Results: The median GTV and PTV reduction were 35% and 30% after 40 Gy treatment. Target volume reduction was correlated with chemotherapy and sex. In plan 2, delivering the same dose to the initial PTV could have only been achieved in 10 (15.2%) patients. Significant differences (p<0.05) were observed regarding doses to the lung, spinal cord, esophagus and heart. Conclusions: Radiotherapy adaptive to tumor shrinkage determined by repeated 18F-FDG PET/CT after 40 Gy during treatment course might be feasible to spare more normal tissues, and has the potential to allow dose escalation and increased local control.

Skin Dose Comparison of CyberKnife and Helical Tomotherapy for Head-and-Neck Stereotactic Body Radiotherapy

  • Yoon, Jeongmin;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Purpose: This study conducts a comparative evaluation of the skin dose in CyberKnife (CK) and Helical Tomotherapy (HT) to predict the accurate dose of radiation and minimize skin burns in head-and-neck stereotactic body radiotherapy. Materials and Methods: Arbitrarily-defined planning target volume (PTV) close to the skin was drawn on the planning computed tomography acquired from a head-and-neck phantom with 19 optically stimulated luminescent dosimeters (OSLDs) attached to the surface (3 OSLDs were positioned at the skin close to PTV and 16 OSLDs were near sideburns and forehead, away from PTV). The calculation doses were obtained from the MultiPlan 5.1.2 treatment planning system using raytracing (RT), finite size pencil beam (FSPB), and Monte Carlo (MC) algorithms for CK. For HT, the skin dose was estimated via convolution superposition (CS) algorithm from the Tomotherapy planning station 5.0.2.5. The prescribed dose was 8 Gy for 95% coverage of the PTV. Results and Conclusions: The mean differences between calculation and measurement values were $-1.2{\pm}3.1%$, $2.5{\pm}7.9%$, $-2.8{\pm}3.8%$, $-6.6{\pm}8.8%$, and $-1.4{\pm}1.8%$ in CS, RT, RT with contour correction (CC), FSPB, and MC, respectively. FSPB showed a dose error comparable to RT. CS and RT with CC led to a small error as compared to FSPB and RT. Considering OSLDs close to PTV, MC minimized the uncertainty of skin dose as compared to other algorithms.

Analysis of 236 Pesticides in Apple for Validation of Multiresidue Method using QuEChERS Sample Preparation and PTV-GC/TOFMS Analysis (QuEChERS법과 PTV-GC/TOFMS 이용 잔류농약 분석법 개발을 위한 사과시료 중 236종 농약의 동시분석)

  • Ju, Ok-Jung;Kwon, Hye-Young;Park, Byeong-Jun;Kim, Chan-Seob;Jin, Yong-Duk;Lee, Je-Bong;Yun, Seo-Hee;Son, Kyung-Ae;Hong, Su-Myeong;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.401-416
    • /
    • 2011
  • The recent trend for pesticide residue analysis in food involves fast cleanup and use of mass spectrometry to achieve quantitative and qualitative analysis at the same time. Recently, the QuEChERS (quick, easy, cheap, effective, rugged and safe) multi-reside method has received much attention as a fast extraction and cleanup method of pesticide residue analysis. Therefore, multi-residue analysis of 236 pesticides was tested with the QuEChERS method by concurrent use of PTV-GC/TOFMS (gas chromatography/ time-of-flight mass spectrometry with programmable temperature vaporizer). PTV condition was optimized and when the method was applied to apples, pesticide recovery rates (spiked at 400 ng/g) ranged from 80% to 120%, and RSD values were under 10% for most compounds. The results showed that the QuEChERS sample preparation and PTV-GC/TOFMS analysis can be applied to multi-residue analysis of pesticides in fruits and vegetables.