• Title/Summary/Keyword: PTFE film

Search Result 55, Processing Time 0.026 seconds

Characteristic Investigation on Super-Hydrophobicity of PTFE Thin Films Deposited on Al Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 Al 기판위에 증착된 PTFE 박막의 초-발수에 관한 특성 연구)

  • Bae, Kang;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.64-69
    • /
    • 2011
  • Super-hydrophobic properties have been achieved on the rf-sputtered polytetrafluoroethylene(PTFE) films deposited on etched aluminum surfaces. The microstructural evolution created after etching has been investigated by FESEM. The water contact angle over $160^{\circ}$ can be achieved on the rf-sputtered ultra-tihn PTFE film less than 10 nm coated on aluminum surface etched with 7 wt.%, 12.5 wt.%, and 15 wt.% HCl concentration for 12 min. XPS analysis have revealed the presence of a large quantity of $-CF_3$ and $-CF_2$ groups in the rf-sputtered PTFE films that effectively can reduce the surface energy of etched aluminum. The presence of patterned morphology along with the low surface energy at the rf-sputtered PTFE coating makes the aluminum surface with high super-hydrophobic property.

Studies on the Synthesis of Potassium Hexatitanate and Manufacturing Thin Film Type Matrix (Potassium hexatitanate의 합성과 박막형 Matrix 제작에 관한 연구)

  • 심중표;이홍기;이주성
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.299-306
    • /
    • 1993
  • The characteristic of synthesized potassium hexatitanate and manufacturing of thin film type matrix for battery was studied. After ball milled the mixture with 1:4 of $K_2CO_3$ and TiO2, mixsture was sintered at 85$0^{\circ}C$ and its product was confirmed with XRD. Adding the PTFE to the obtained potassium hexatitanate according to there various ball-mill time to control its particle size, thin film type matrix was manufactured. The high-est wettability of 50% was found with 12 hour ball milled powder containing 10w/o of PTFE and also it shown good mechanical properties. The matrix with $K_2O$$\cdot$$6TiO_2$ whisker shown 170% of wettability. Thed char-acteristics of matrix made by whisker and powder mixture were compared with the investigation of bubbled pressure and pore size distribution to improve its mechanical properties.

  • PDF

Micro/nano Tribological and Water Wetting Characteristics of Ion Beam Treated PTFE Surfaces

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Hosung
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • Micro/nano tribological and water wetting characteristics of ion beam treated PTFE (polytetrafluoroethylene) surfaces were experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun at different argon ion dose conditions in a vacuum chamber to modify the topography of PTFE surface. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribe tester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. Water wetting angle of the ion beam treated samples increased with the ion dose, so the surface shows an ultra-hydrophobic nature. Micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-tribological characteristics showed different results. The scale effect of surface topography on tribological characteristics was discussed. Also, the water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

A study on the Development of Transducer Detecting Infrasonic (초저주파를 검출하는 변환기의 개발에 대한 연구)

  • 이성백;김재환;강영창;이준웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 1981
  • Infrasonic transducer made with dielectric materials, such as polytetrafluoroethyleme(PTFE)film. The experimental result obtained that the response is within $\pm$1.5dB from 0.1Hz to 7KHz, and that sensitivities of typical transducer are fixed -60dB. The time constant of the transducer at room temperature is over 60 years, and the activation energy of the value of 1.1eV at 343K acquired. This transducer can have application to high-quality communication system, seismological observation etc.

  • PDF

Hydrophilization of a Porous Polytetrafluoroethylene Supporter by Radiation Grafting Poly(Acrylonitrile-co-Sodium Allylsulfonate) (Acrylonitrile/Sodium Allylsulfonate 공중합체 방사선 접목을 이용한 다공성 Polytetrafluoroethylene 지지체의 친수화)

  • Park, Byeong-Hee;Sohn, Joon-Yong;Yoon, Ki-Suk;Shin, Junhwa
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • We prepared hydrophilic porous supporters for the reinforced composite fuel cell membrane by radiation grafting of acrylonitrile (AN) and hydrophilic sodium allylsulfonate (SAS) into a porous polytetrafluoroethylene (PTFE) supporter. The physicochemical properties of the supporters prepared under various reaction conditions such as molar ratio of SAS/AN, monomer concentration, and irradiation dose were evaluated. FTIR was utilized to confirm the successful introduction of SAS/AN copolymer chains into the porous PTFE. The pores of the porous PTFE film were found to be decreased with an increase in the degree of grafting by using FE-SEM and gurley number. Furthermore, by analyzing the degree of grafting, contact angle, and TBO (toluidine blue O) uptake, the hydrophilicity of the prepared supporters was found to increase with an increase in the degree of grafting.

Enhancing Adhesion between Polyphenylene Sulfide Fabric and Polytetrafluoroethylene Film for Thermally Stable Air Filtration Membrane (열안정 공기 여과막용 폴리페닐렌 설파이드 원단과 폴리테트라플루오로에틸렌 필름 사이의 접착력 향상)

  • Jin Uk Kim;Hye Jeong Son;Sang Hoon Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.201-210
    • /
    • 2023
  • Dust filter membranes play a crucial role in human life and various industries, as they contribute to several important aspects of human health, safety, and environmental protection. This study presents the development of a polysulfone@polyphenylene sulfide/polytetrafluoroethylene (PSf@PPS/ePTFE) composite dust filter membrane with excellent thermal stability and adhesion properties for high-temperature conditions. FT-IR analysis confirms successful impregnation of PSf adhesive onto PPS fabric and interaction with ePTFE support. FE-SEM images reveal improved fiber interconnection and adhesion with increased PSf concentration. PSf@PPS/ePTFE-5 exhibits the most suitable porous structure. The composite membrane demonstrates exceptional thermal stability up to 400℃. Peel resistance tests show sufficient adhesion for dust filtration, ensuring reliable performance under tough, high-temperature conditions without compromising air permeability. This membrane offers promising potential for industrial applications. Further optimizations and applications can be explored.

Evaluating the performance and characteristics of Rutile TiO2 thin film for Triboelectric Nanogenerator (TENG) (Triboelectric Nanogenerator (TENG)를 위한 Rutile TiO2 박막 성능 및 특성 평가)

  • Moon, Ji-Hyeon;Kim, Han-Jae;Kim, Hyo-Bae;Ahn, Ji-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.324-330
    • /
    • 2021
  • As energy harvesting technology becomes important in relation to environmental issues, piezoelectric materials that convert mechanical energy into electrical energy are attracting attention. However, PZT, a representative material for piezoelectricity, is becoming difficult to use due to the problem that its components can cause environmental pollution. For this reason, recent research suggests a triboelectric nanogenerator (TENG) that generates energy through the combined effect of triboelectricity and electric induction for alternative piezoelectric devices. In TENG, electrical power is determined by the dielectric constant, thickness, and grain generation of the charged material. Therefore, in this study, a Rutile phase TiO2 thin film with high dielectric constant was formed using the spin-coating process and the effect of annealing was investigated. For electrical analysis, a TENG device was fabricated using PTFE as a material with an opposite charge, and electrical output according to film thickness and grain formation was comparatively analyzed.

Metallization of Polymers Modified by Ton-Assisted Reaction (IAR)

  • J.S. Cho;Bang, Wan-Keun;Kim, K.H.;Sang Han;Y.B. Sun;S.K. Koh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2001
  • Surfaces of PTFE and PVDF were modified by ion-assisted reaction (IAR) in which 1 keV $Ar^{+}$ ions were irradiated on the surface of the polymer with varying ion dose in an oxygen gas environment, and Cu, Pt, Al and Ag thin films were deposited on the modified polymers. Wettability of the modified polymers was largely improved by the formation of hydrophilic groups due to chemical reaction between polymer surface and the oxygen gas during IAR. The change in wettability in the modified polymers was also related to the change in surface morphology and roughness. Adhesion between metal films and polymers modified by IAR was significantly improved, so that no detachment was possible in the $Scotch^{TM}$ tape test. The increase of adhesion strength between the metal film and the modified PVDF was mainly attributed to the formation of hydrophilic groups, which interacted with the metal film. In the case of the modified PTFE, the enhanced adhesion to metal film could be explained by the change in surface morphology together with the formation of hydrophilic groups. The electrical properties of the metal films on the modified polymers were also investigated.

  • PDF

Surface energy change and hydrophilic formation of PE, PS and PTFE films modification by hydrogen ion assisted reaction

  • Jung Cho;Ki Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.202-202
    • /
    • 1999
  • The Polyethylene (PE), Polystyrene (PS) and Polytetrafluoroethylene (PTFE) surface modification was investigated by hydrogen io assisted reaction (H-IAR) in oxygen environment. The IAR is a kind of surface modification techniques using ion beam irradiation in reactive gas environment. The energy of hydrogen ion beam was fixed at 1keV, io dose was varied from 5$\times$1014 to 1$\times$1017 ions/$\textrm{cm}^2$, and amount of oxygen blowing gas was fixed 4ml/min. Wettability was measured by water contact angles measurement, and the surface functionality was analyzed by x-ray photoelectron spectroscopy. The contact angle of water on PE modified by argon ion beam only decrease from 95$^{\circ}$ to 52$^{\circ}$, and surface energy was not changed significantly. But, the contact angle using hydrogen ion beam with flowing 4ml/min oxygen stiffly decreased to 8$^{\circ}$ and surface energy to 65 ergs/cm. In case of PS, the contact angle and surface energy changes were similar results of PE, but the contact angle of PTEE samples decreased with ion dose up to 1$\times$1015 ions/$\textrm{cm}^2$, increased at higher dose, and finally increased to the extent that no wetting was appeared at 1$\times$1017 ions/$\textrm{cm}^2$. These results must be due to the hydrogen ion beam that cleans the surface removing the impurities on polymer surfaces, then hydrogen ion beam was activated with C-H bonding to make some functional groups in order to react with the oxygen gases. Finally, unstable polymer surface can be changed from hydrophobic to hydrophilic formation such as C-O and C=O that were confirmed by the XPS analysis, conclusionally, the ion assisted reaction is very effective tools to attach reactive ion species to form functional groups on C-C bond chains of PE, PS and PTFE.

  • PDF