• 제목/요약/키워드: PTEN

검색결과 98건 처리시간 0.025초

남성호르몬 비의존형 전립선 암세포에서 탁리소독음(托裏消毒飮) 추출물의 세포고사 유도 효과 (Apoptosis-inducing Effect of Takrisodokyeum Extract in Androgen Independent Prostate Cancer Cells)

  • 이형재;권강범;신병철;김은경;한미정;송미영;이영래;박병현;류도곤
    • 동의생리병리학회지
    • /
    • 제20권4호
    • /
    • pp.861-865
    • /
    • 2006
  • Takrisodokyeum (TRSDY) has been known to exert anti-tumoral activity in Korea. However, its molecular mechanism of action is not understood. In this study, we found that TRSDY induced apoptosis in androgen-independent prostate cancer DU145 cells as evidenced by DNA fragmentation and chromatine condensation in hoechst 33342 dye staining. Our data demonstrated that TRSDY-induced apoptotic cell death was accompanied by increases of PTEN and Par-4 in a time-dependent manner Taken together, these results suggest that TRSDY induce PTEN and Par-4 expression, and eventually lead to apoptotic cell death in androgen independent prostate cancer DU145 cells.

MiR-21 Upregulation Induced by Promoter Zone Histone Acetylation is Associated with Chemoresistance to Gemcitabine and Enhanced Malignancy of Pancreatic Cancer Cells

  • Song, Wei-Feng;Wang, Lei;Huang, Wei-Yi;Cai, Xun;Cui, Jiu-Jie;Wang, Li-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7529-7536
    • /
    • 2013
  • Background and Aims: MicroRNA-21 (miR-21) is reported to be overexpressed and to contribute to proliferation, apoptosis and gemcitabine resistance in pancreatic ductal adenocarcinomas (PDACs). The aims of this study were to explore regulation of miR-21 expression by epigenetic change and its impact on chemoresistance and malignant properties of of pancreatic cancer. Materials and methods: We retrospectively collected 41 cases of advanced pancreatic cancer patients who were sensitive or resistant to gemcitabine and assessed levels of serum circulating miR-21 for correlation with cytotoxic activity. Histone acetylation in the miR-21 promoter was also studied in gemcitabine-sensitive and gemcitabine-resistant PDAC cells. Gemcitabine-resistant HPAC and PANC-1 cells were transfected with pre-miR-21 precursors (pre-miR-21) and antisense oligonucleotides (anti-miR-21), and were treated with TSA. Finally, invasion and metastasis assays were performed and alteration in mir-21, PTEN, AKT and pAKT level was evaluated in these cells. Results: Serum miR-21 levels were increased in gemcitabine-resistant PDAC patients compared with gemcitabine-sensitive subjects. The miR-21 levels were increased in 6 PDAC cells treated with gemcitabine significantly, associated with 50% inhibitory concentrations ($IC_{50}s$). Histone acetylation levels at miR-21 promoter were increased in PDAC cells after treatment with gemcitabine. Enhanced invasion and metastasis, increased miR-21 expression, decreased PTEN, elevated pAKT level were demonstrated in gemcitabine-resistant HPAC and PANC-1 cells. Pre-miR-21 transfection or TSA treatment further increased invasion and metastasis ability, decreased PTEN, and elevated pAKT levels in these two lines. In contrast, anti-miR-21 transfection could reverse invasion and metastasis, and PTEN and pAKT expressions induced by gemcitabine. Conclusions: MiR-21 upregulation induced by histone acetylation in the promoter zone is associated with chemoresistance to gemcitabine and enhanced malignant potential in pancreatic cancer cells.

15-Hydroxyeicosatetraenoic Acid Inhibits Phorbol-12-Myristate-13-Acetate-Induced MUC5AC Expression in NCI-H292 Respiratory Epithelial Cells

  • Song, Yong-Seok;Kim, Man Sub;Lee, Dong Hun;Oh, Doek-Kun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.589-597
    • /
    • 2015
  • It has been reported that overexpression of MUC5AC induced by excessive inflammation leads to airway obstruction in respiratory diseases such as chronic obstructive pulmonary disease and asthma. 15-Hydroxyeicosatetraenoic acid (15-HETE) has been reported to have anti-inflammatory effects, but the role of 15-HETE in respiratory inflammation has not been determined. Therefore, the aim of this study was to investigate the effects of 15-HETE on MUC5AC expression and related pathways. In this study, phorbol-12-myristate-13-acetate (PMA) was used to stimulate NCI-H292 bronchial epithelial cells in order to examine the effects of 15-HETE. 15-HETE inhibited PMA-induced expression of MUC5AC mRNA and secretion of MUC5AC protein. Moreover, 15-HETE regulated matrix metallopeptidase 9 (MMP-9), mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK). In addition, 15-HETE decreased the nuclear translocation of specificity protein-1 (Sp-1) transcription factor and nuclear factor κB (NF-κB). Furthermore, 15-HETE enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) as a PPARγ agonist. This activity reduced the phosphorylation of protein kinase B (PΚB/Akt) by increasing the expression of phosphatase and tensin homolog (PTEN). In conclusion, 15-HETE regulated MUC5AC expression via modulating MMP-9, MEK/ERK/Sp-1, and PPARγ/PTEN/Akt signaling pathways in PMA-treated respiratory epithelial cells.

COX-2 억제제에 의한 AKT 경로를 통한 구강편평세포암종 세포주의 세포사멸 유도 (COX-2 INHIBITOR INDUCED APOPTOSIS IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE THROUGH AKT PATHWAY)

  • 서영호;한세진;이재훈
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권1호
    • /
    • pp.30-40
    • /
    • 2008
  • The objectives of this study was to check up the effect of celecoxib, COX-2 inhibitor, on the pathogenesis of oral squamous cell carcinoma. After mefenamic acid, aspirin and celecoxib, COX-2 inhibitor, were inoculated to HN 22 cell line, the following results were obtained through tumor cell viability by wortmannin, growth curve of tumor cell line, apoptotic index, PGE2 synthesis, total RNA extraction, RT-PCR analysis and TEM features. 1. When wortmannin and celecoxib were given together, the survival rate of tumor cells was lowest about 47 %. So wortmannin had an effect on the decrease of survival rate of tumor cells. 2. In growth curve, the slowest growth was observed in celecoxib inoculated group. 3. The synthesis of PGE2 was decreased in all group and the obvious suppression and highest apoptotic index was observed in celecoxib inoculated group. 4. Suppression of expression of COX-2 mRNA was evident in celecoxib inoculated group. But that of COX-1,2 mRNA was observed in mefenamic acid inoculated group and aspirin inoculated group. 5. In celecoxib inoculated group, mRNA expression of AKT1 was decreased and that of PTEN & expression of caspase 3 and 9 was evidently increased. Depending on above results, when celecoxib was inoculated to oral squamous cell carcinoma cell line, an increase of mRNA expression of caspase 3,9 and PTEN is related to a decrease of mRNA expression of AKT1. Wortmannin had an effect on the decrease of survival rate of tumor cells. Celecoxib might induce apoptosis of tumor cell by suppression of AKT1 pathway and COX-2 inhibition. This results suggested that COX-2 inhibitor might be significantly effective in chemoprevention of oral squamous cell carcinoma.

Peroxisome Proliferator-Activated Receptor-Gamma Agonist 4-O-Methylhonokiol Induces Apoptosis by Triggering the Intrinsic Apoptosis Pathway and Inhibiting the PI3K/Akt Survival Pathway in SiHa Human Cervical Cancer Cells

  • Hyun, Seungyeon;Kim, Man Sub;Song, Yong Seok;Bak, Yesol;Ham, Sun Young;Lee, Dong Hun;Hong, Jintae;Yoon, Do Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.334-342
    • /
    • 2015
  • 4-O-Methylhonokiol (MH), a bioactive compound derived from Magnolia officinalis, is known to exhibit antitumor effects in various cancer cells. However, the precise mechanism of its anticancer activity in cervical cancer cells has not yet been studied. In this study, we demonstrated that MH induces apoptosis in SiHa cervical cancer cells by enhancing peroxisome proliferator-activated receptor-gamma (PPARγ) activation, followed by inhibition of the PI3K/Akt pathway and intrinsic pathway induction. MH upregulated PPARγ and PTEN expression levels while it decreased p-Akt in the MH-induced apoptotic process, thereby supporting the fact that MH is a PPARγ activator. Additionally, MH decreased the expression of Bcl-2 and Bcl-XL, inducing the intrinsic pathway in MH-treated SiHa cells. Furthermore, MH treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of polyADP ribose polymerase. The expression levels of Fas (CD95) and E6/E7 oncogenes were not altered by MH treatment. Taken together, MH activates PPARγ/PTEN expression and induces apoptosis via suppression of the PI3K/Akt pathway and mitochondria-dependent pathways in SiHa cells. These findings suggest that MH has potential for development as a therapeutic agent for human cervical cancer.

Combined Treatment with 2-Deoxy-D-Glucose and Doxorubicin Enhances the in Vitro Efficiency of Breast Cancer Radiotherapy

  • Islamian, Jalil Pirayesh;Aghaee, Fahimeh;Farajollahi, Alireza;Baradaran, Behzad;Fazel, Mona
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8431-8438
    • /
    • 2016
  • Doxorubicin (DOX) was introduced as an effective chemotherapeutic for a wide range of cancers but with some severe side effects especially on myocardia. 2-Deoxy-D-glucose (2DG) enhances the damage caused by chemotherapeutics and ionizing radiation (IR) selectively in cancer cells. We have studied the effects of $1{\mu}M$ DOX and $500{\mu}M$ 2DG on radiation induced cell death, apoptosis and also on the expression levels of p53 and PTEN genes in T47D and SKBR3 breast cancer cells irradiated with 100, 150 and 200 cGy x-rays. DOX and 2DG treatments resulted in altered radiation-induced expression levels of p53 and PTEN genes in T47D as well as SKBR3 cells. In addition, the combination along with IR decreased the viability of both cell lines. The radiobiological parameter (D0) of T47D cells treated with 2DG/DOX and IR was 140 cGy compared to 160 cGy obtained with IR alone. The same parameters for SKBR3 cell lines were calculated as 120 and 140 cGy, respectively. The sensitivity enhancement ratios (SERs) for the combined chemo-radiotherapy on T47D and SKBR3 cell lines were 1.14 and 1.16, respectively. According to the obtained results, the combination treatment may use as an effective targeted treatment of breast cancer either by reducing the single modality treatment side effects.

Circulating Tumor DNA in a Breast Cancer Patient's Plasma Represents Driver Alterations in the Tumor Tissue

  • Lee, Jieun;Cho, Sung-Min;Kim, Min Sung;Lee, Sug Hyung;Chung, Yeun-Jun;Jung, Seung-Hyun
    • Genomics & Informatics
    • /
    • 제15권1호
    • /
    • pp.48-50
    • /
    • 2017
  • Tumor tissues from biopsies or surgery are major sources for the next generation sequencing (NGS) study, but these procedures are invasive and have limitation to overcome intratumor heterogeneity. Recent studies have shown that driver alterations in tumor tissues can be detected by liquid biopsy which is a less invasive technique capable of both capturing the tumor heterogeneity and overcoming the difficulty in tissue sampling. However, it is still unclear whether the driver alterations in liquid biopsy can be detected by targeted NGS and how those related to the tissue biopsy. In this study, we performed whole-exome sequencing for a breast cancer tissue and identified PTEN p.H259fs*7 frameshift mutation. In the plasma DNA (liquid biopsy) analysis by targeted NGS, the same variant initially identified in the tumor tissue was also detected with low variant allele frequency. This mutation was subsequently validated by digital polymerase chain reaction in liquid biopsy. Our result confirm that driver alterations identified in the tumor tissue were detected in liquid biopsy by targeted NGS as well, and suggest that a higher depth of sequencing coverage is needed for detection of genomic alterations in a liquid biopsy.