• Title/Summary/Keyword: PTCR

Search Result 154, Processing Time 0.022 seconds

The Effects of Ca Addition on Electrical Properties of PTCR Thermistor (Ca 첨가가 PTCR 써미스터의 전기적 특성에 미치는 영향)

  • Kim, Byung-Su;Kim, Jong-Taek;Kim, Chul-Soo;Kim, Yong-Huck;Lee, Duck-Chool
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.121-127
    • /
    • 1998
  • In this paper, to develop PTCR(Positive Temperature Coefficient of Resistance) thermistor with high withstanding voltage, Ca were added to. the compositions of $(Ba_{0.9165-X}-Sr_{0.08}-Ca_X-Y_{0.0035})TiO_3+MnO_2$ 0.02wt%+$SiO_2$ 0.5wt%. the effects of Ca additions were researched according the increasing of Ca from 0[mol%] to 20[mol%], and the electrical properties were investigated. As increasing Ca additions from 0[mol%] to 20[mol%], the grain size of the specimens was reduced from 11.1[${\mu}m$] to 6.15[${\mu}m$], and also the sintered density was reduced from 5.43[$g/cm^3$] to 5.05[$g/cm^3$] and their the breakdown voltages were increased from 163[V/mm] to 232[V/mm]. It is shown that the breakdown voltage was increased with amount of Ca additions.

  • PDF

Study of Mold Internal Temperature Measurement Using PTCR for 3-D Glass Heat Forming (PTCR을 이용한 3-D Glass 열성형 금형의 내부 온도 측정에 관한 연구)

  • Lee, Ho-Soon;Ahn, Hae-Won;Kim, Si-Gyun;Kim, Gi-Man;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.146-152
    • /
    • 2017
  • In order to make 3-D glass from 2-D glass for mobile device windows, a mold is used for heat forming. In this process, the temperature of the glass is very important. However, measuring the temperature of the glass inside the mold is very difficult owing to the mold structure and the high temperature. The purpose of this study is to measure the temperature inside the mold by using Process Temperature Control Rings (PTCR) and to compensate for temperature differences in the heat forming machine and inside the mold. The measuring method uses the ceramic material's shrinkage characteristics, which makes it possible to measure the temperature inside the mold at various locations.

PTCR Properties of $BaTiO_3$ Ceramic Variation of Dopant (불순물 첨가에 따른 $BaTiO_3$ 세라믹스의 PTCR 특성)

  • Kang, Jeong-Min;Cho, Hyun-Moo;Lee, Jong-Deok;Park, Sang-Man;Lee, Young-Hie;Lee, Sung-Gap
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.412-415
    • /
    • 2004
  • PTC Thermistors specimens were fabricated by added $MnO_2$ as donors, and $Nb_2O_5$ as accepters and sintered $1250^{\circ}C/2hrs$. Average grain size decreased with increased in added $MnO_2$, and increased with added in $Nb_2O_5$. But, appeared liquid phase as $BaTiO_3$ and $TiO_2$, affect to grain growth. XRD result, peak strength waslowed then crystallization not well, but, secondary phase were not showed all specimens. All specimens resistance were so high, about $40M{\Omega}$ over, couldn't measured to those resistance and doesn't appear PTCR effect.

  • PDF

Effects of Nb2O5 and MnO2 on the PTCR behavior of Lead-free Ba0.99(Bi1/2Na1/2)0.01TiO3 Ceramics (무연 Ba0.99(Bi1/2Na1/2)0.01TiO3 세라믹의 PTCR 특성에 미치는 Nb2O5와 MnO2의 효과)

  • Park, Yong-Jun;Nahm, Sahn;Lee, Young-Jin;Jeong, Young-Hun;Paik, Jong-Hoo;Kim, Dae-Joon;Lee, Woo-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.638-644
    • /
    • 2008
  • The effects of $Nb_2O_5$ and $MnO_2$ on the positive temperature coefficient of resistivity (PTCR) behavior of lead-free $Ba_{0.99}(Bi_{1/2}Na_{1/2})_{0.01}TiO_3$ (BaBiNT) ceramics were investigated in order to fabricate a PTC thermistor available at high temperature of > $120^{\circ}C$. In particular, 0.05 mol% $Nb_2O_5$ added BaBiNT ceramic, which has significantly increased Curie temperature (Tc) of $160^{\circ}C$, showed good PTCR behavior; low resistivity at room temperature $(\rho_r)$ of $80.1{\Omega}{\cdot}cm$, a high $\rho_{max}/\rho_{min}$ ratio of $5.65{\times}10^3$ and a large resistivity temperature factor (a) of 18.5%/$^{\circ}C$. Furthermore, the improved $\rho_{max}/\rho_{min}$ of $6.48{\times}10^4$ and a of 25.4%/$^{\circ}C$ along with higher $T_c$ of $167^{\circ}C$ despite slightly increased $\rho_r$ of $569{\Omega}{\cdot}cm$, could be obtained for the BaBiNT + 0.05 mol% $Nb_2O_5$ + 0.02 wt% $MnO_2$ ceramic cooled down at a rate of $200^{\circ}C/h$.

Effect of $Na_2Ti_6O_{13}$ on Microstructure and PTCR Characteristics of $BaTiO_2-(Bi_{0.5}Na_{0.5})TiO_3$ ceramics ($Na_2Ti_6O_{13}$ 첨가에 따른 $BaTiO_2-(Bi_{0.5}Na_{0.5})TiO_3$ 세라믹스의 미세구조 및 PTCR 특성에 미치는 영향)

  • Cha, Yu-Joung;Kim, Chul-Min;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.15-15
    • /
    • 2010
  • $Na_2Ti_6O_{13}$ (NT)가 도핑된 $BaTiO_3-(Bi_{0.5}Na_{0.5})TiO_3$ BBNT) PTCR 세라믹스를 변형된 세라믹공정을 이용하여 제조하였다. 제조된 BBNT 세라믹의 미세구조와 PTCR 특성에 미치는 NT의 효과를 조사하였다. $1300^{\circ}C$에서 합성된 BBNT 세라믹은 NT의 도핑량이 증가함에 따라 비정상적으로 성장된 입자의 수가 증가하였다. 뿐만 아니라, NT의 도핑량 증가는 상온비저항을 약간 증가시켰지만 큐리온도 (Tc) 부근의 최대비저항/최소비저항으로 정의되는 PTC 점프 특성을 크게 향상시켰다. 특히, 0.01mol%의 NT 도핑 시 상온비저항은 $425\;\Omega{\cdot}cm$, PTC 점프는 ($2.02{\times}^10^5$) 저항온도계수는 69.8% 및 Tc는 $155^{\circ}C$의 우수한 결과를 나타내었다.

  • PDF

Effect of Internal Electrode on the Microstructure of Multilayer PTC Thermistor (적층형 PTC 서미스터의 미세구조와 PTCR 물성에 미치는 내부전극재의 영향)

  • Myoung, Seong-Jae;Lee, Jung-Chul;Hur, Geun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.181-181
    • /
    • 2007
  • PTCR 세라믹스를 적층형 부품으로 제조할 경우 소형화, 저 저항화 및 과전류 유입 시 빠른 응답특성을 갖는다는 장점을 가지고 있으며, 이러한 적층형 부품제조시에는 내부전극재가 부품소자의 물성에 중요한 영향을 미친다. 특히 우수한 옴성 접촉(Ohmic Contact)을 갖는 Zn, Fe, Sn, Ni 등의 적층 PTC용 전극재는 높은 산화특성으로 인해 재산화 과정에서의 비옴성 접촉(Non-ohmic contact)을 갖게 되어 PTC 특성을 저하시킬 우려가 있다. 따라서 본 연구에서는 적층형 PTCR 세라믹스의 내부전극재와 반도체 세라믹층의 동시소성거동 및 적층 PTCR 세라믹스의 전기적 특성을 평가하였다. 본 연구에 적용된 내부전극재로는 Ni 전극을 사용하였고, Ni 전극용 paste로는 무공제 paste, 반도체 세라믹공제 paste, $BaTiO_3$ 공제 paste의 3종 전극재가 이용되었다. 적층형 PTCR 세라믹스의 제조공정은 테이프 캐스팅(Tape casting), 내부전극인쇄, 적층 및 동시소성을 포함하는 적층화공정을 적용하였다. 각각의 전극 paste를 적용하여 제조된 chip은 미세구조관찰, I-V특성, R-T특성 등을 평가하여 내부전극내 세라믹공제의 영향을 고찰하였다.

  • PDF

Effect of MnO2 Addition on Sintering and PTCR Properties in Y2O3 doped BaTiO3 Semiconducting Ceramics (MnO2첨가가 Y2O3 doped BaTiO3 반도체 세라믹스의 소결 및 PTCR특성에 미치는 영향)

  • 이준형;박금덕;김정주;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 1990
  • The influence of MnO2 on the sintering property and PTCR behavior of(Ba0.8Sr0.2)TiO2 has been investigated. And the densities, grain sizes and electrical resitivities of specimens were measured as a function of doping with Mn ion of varying concentration. The density and grain size of the sintered specimens were almost the same regardless of MnO2 addition up to 0.2mol% MnO2. But in the case of 0.25mol% MnO2 addition, abnormal grain growth was appeared. So the grain size distribution was wide and density decreased greatly. The room-temperature resistivity increased as Mn content increased and the temperature coefficient of resistivity was highest in the case of 0.15mol% MnO2 addition.

  • PDF

PTCR Effect in Molten Salt Systhesized Barium-Lead Titanate (용융염 합성법에 의한 (Ba, Pb)TiO3의 PTCR효과)

  • 윤기현;이만화
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.349-356
    • /
    • 1988
  • The PTCR characteristics of (Ba0.8Pb0.2)TiO3 ceramics prepared by the molten salt sysnthesis (MSS) method have been investigated as a function of the amount of Nb2O5 dopant and KCl flux. When the weight ratio of KCl to raw material is 0.8, the resistivity at room temperature decreases with increasing amount of Nb dopant up to 0.6 atom%. It can be explained by compensation for electrons due to Nb+5 ion and holes due to K+ ion. The resistivity of (Ba0.8Pb0.2)(Ti0.994Nb0.006)O3 ceramics at room temperature decreases with increasing the ratio of KCl to raw material up to 0.6, and then increases. These results can be explained by the effect of K+ ion.

  • PDF

Effect of $Si_3N_4$ Addition on the Microstructure and PTCR Characteristics in Semiconducting $BaTiO_3$ Ceramics (반도성 $BaTiO_3$ 세라믹스의 미세구조 및 PTCR 특성에 미치는 $Si_3N_4$ 첨가효과)

  • 김준수;정윤해;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1089-1098
    • /
    • 1994
  • The effect of Si3N4 addition on the microstructure and PTCR characteristics of BaTiO3 was studied. When 0.1 mol% Sb2O3-doped BaTiO3 codoped with Si3N4 (0.1, 0.25, 0.5, 0.75, and 1 wt%, respectively) were sintered, their microstructures were changed by the amount of the liquid phase as a result of eutectic reaction at 126$0^{\circ}C$. By these microstructural changes, the specific resistivity ratio($\rho$max/$\rho$min) with Si3N4 content variation of 0.1 mol% Sb2O3-doped BaTiO3 ceramics sintered at 130$0^{\circ}C$ for 1 hour varied between 3.70$\times$102(0.1 wt% Si3N4) to 1.16$\times$103 (1wt% Si3N4).

  • PDF

PTCR Effects of Semiconducting (Ba1-xPbx)TiO3 Ceramics with 0.5 mol% Pb5Ge3O11 (0.5 mol% Pb5Ge3O11가 첨가된 반도성 (Ba1-xPbx)TiO3 세라믹스의 PTCR 효과)

  • 윤상옥;정형진;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.525-530
    • /
    • 1991
  • The effects of 0.15mol% Y2O3 doped semiconducting (Ba1-xPbx)TiO3 ceramics with 0.5 mol% Pb5Ge3O11 as sintering additives have been investigated as function of Pb contents (from 0.05 mol to 0.3 mol) and sintering temperatures (from 1050$^{\circ}C$ to 1200$^{\circ}C$). As the Pb content increases in the (Ba1-xPbx)TiO3 system, the size and resistance of the grain increase but the capacitance of the grain boundary decreases due to the formation of liquid phase during the sintering. And with increasing the sintering temperatures, the resistance of the grain decreases but the capacitance of the grain boundary increases. The PTCR effects decrease with increasing the Pb content and the sintering temperature.

  • PDF