• Title/Summary/Keyword: PSO Algorithms

Search Result 130, Processing Time 0.021 seconds

A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism (Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구)

  • Song, Dong-Ho;Lee, Young-Il;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.527-531
    • /
    • 2012
  • In this paper, a novel DPSO-QI (Distributed PSO with quantum-infusion mechanism) algorithm improving one of the fatal defect, the so-called premature convergence, that degrades the performance of the conventional PSO algorithms is proposed. The proposed scheme has the following two distinguished features. First, a concept of neighborhood of each particle is introduced, which divides the whole swarm into several small groups with an appropriate size. Such a strategy restricts the information exchange between particles to be done only in each small group. It thus results in the improvement of particles' diversity and further minimization of a probability of occurring the premature convergence phenomena. Second, a quantum-infusion (QI) mechanism based on the quantum mechanics is introduced to generate a meaningful offspring in each small group. This offspring in our PSO mechanism improves the ability to explore a wider area precisely compared to the conventional one, so that the degree of precision of the algorithm is improved. Finally, some numerical results are compared with those of the conventional researches, which clearly demonstrates the effectiveness and reliability of the proposed DPSO-QI algorithm.

Maximum Power Point Tracking of Photovoltaic using Improved Particle Swarm Optimization Algorithm (개선된 입자 무리 최적화 알고리즘 이용한 태양광 패널의 최대 전력점 추적)

  • Kim, Jae-Jung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.291-298
    • /
    • 2020
  • This study proposed a model that can track MPP faster than the existing MPPT algorithm using the particle swarm optimization algorithm (PSO). The proposed model highly sets the acceleration constants of gbest and pbest in the PSO algorithm to quickly track the MPP point and eliminates the power instability problem. In addition, this algorithm was re-executed by detecting the change in power of the solar panel according to the rapid change in solar radiation. As a result of the experiment, MPP time was 0.03 seconds and power was 131.65 for 691.5 W/m2, and MPP was tracked at higher power and speed than the existing P&O and INC algorithms. The proposed model can be applied when a change in the amount of power is detected by partial shading in a Photovoltaic power plant with Photovoltaic connected in parallel. In order to improve the MPPT algorithm, this study needs a comparative study on optimization algorithms such as moth flame optimization (MFO) and whale optimization algorithm (WOA).

Performance Comparison of Discrete Particle Swarm Optimizations in Sequencing Problems (순서화 문제에서 01산적 Particle Swarm Optimization들의 성능 비교)

  • Yim, D.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.58-68
    • /
    • 2010
  • Particle Swarm Optimization (PSO) which has been well known to solve continuous problems can be applied to discrete combinatorial problems. Several DPSO (Discrete Particle Swarm Optimization) algorithms have been proposed to solve discrete problems such as traveling salesman, vehicle routing, and flow shop scheduling problems. They are different in representation of position and velocity vectors, operation mechanisms for updating vectors. In this paper, the performance of 5 DPSOs is analyzed by applying to traditional Traveling Salesman Problems. The experiment shows that DPSOs are comparable or superior to a genetic algorithm (GA). Also, hybrid PSO combined with local optimization (i.e., 2-OPT) provides much improved solutions. Since DPSO requires more computation time compared with GA, however, the performance of hybrid DPSO is not better than hybrid GA.

Comparison of Particle Swarm Optimization and the Genetic Algorithm in the Improvement of Power System Stability by an SSSC-based Controller

  • Peyvandi, M.;Zafarani, M.;Nasr, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2011
  • Genetic algorithms (GA) and particle swarm optimization (PSO) are the most famous optimization techniques among various modern heuristic optimization techniques. These two approaches identify the solution to a given objective function, but they employ different strategies and computational effort; therefore, a comparison of their performance is needed. This paper presents the application and performance comparison of the PSO and GA optimization techniques for a static synchronous series compensator-based controller design. The design objective is to enhance power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem, and both PSO and GA optimization techniques are employed to search for the optimal controller parameters.

CADICA: Diagnosis of Coronary Artery Disease Using the Imperialist Competitive Algorithm

  • Mahmoodabadi, Zahra;Abadeh, Mohammad Saniee
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • Coronary artery disease (CAD) is currently a prevalent disease from which many people suffer. Early detection and treatment could reduce the risk of heart attack. Currently, the golden standard for the diagnosis of CAD is angiography, which is an invasive procedure. In this article, we propose an algorithm that uses data mining techniques, a fuzzy expert system, and the imperialist competitive algorithm (ICA), to make CAD diagnosis by a non-invasive procedure. The ICA is used to adjust the fuzzy membership functions. The proposed method has been evaluated with the Cleveland and Hungarian datasets. The advantage of this method, compared with others, is the interpretability. The accuracy of the proposed method is 94.92% by 11 rules, and the average length of 4. To compare the colonial competitive algorithm with other metaheuristic algorithms, the proposed method has been implemented with the particle swarm optimization (PSO) algorithm. The results indicate that the colonial competition algorithm is more efficient than the PSO algorithm.

Directional Emission from Photonic Crystal Waveguide Output by Terminating with CROW and Employing the PSO Algorithm

  • Bozorgi, Mahdieh;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.187-195
    • /
    • 2011
  • We have designed two photonic crystal waveguide (PCW) structures with output focused beams in order to achieve more coupling between photonic devices and decrease the mismatch losses in photonic integrated circuits. PCW with coupled resonator optical waveguide (CROW) termination has been optimized by both one dimensional (1D) and seven dimensional (7D) particle swarm optimization (PSO) algorithms by evaluating the fitness function by the finite difference time domain (FDTD) method. The 1D and 7D-optimizations caused the factors of 2.79 and 3.875 improvements in intensity of the main lobe compared to the non-optimized structure, whereas the FWHM in 7D-optimized structure was increased, unlike the 1D case. It has also been shown that the increment of focusing causes decrement of the bandwidth.

Bargaining Game using Artificial agent based on Evolution Computation (진화계산 기반 인공에이전트를 이용한 교섭게임)

  • Seong, Myoung-Ho;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.293-303
    • /
    • 2016
  • Analysis of bargaining games utilizing evolutionary computation in recent years has dealt with important issues in the field of game theory. In this paper, we investigated interaction and coevolution process among heterogeneous artificial agents using evolutionary computation in the bargaining game. We present three kinds of evolving-strategic agents participating in the bargaining games; genetic algorithms (GA), particle swarm optimization (PSO) and differential evolution (DE). The co-evolutionary processes among three kinds of artificial agents which are GA-agent, PSO-agent, and DE-agent are tested to observe which EC-agent shows the best performance in the bargaining game. The simulation results show that a PSO-agent is better than a GA-agent and a DE-agent, and that a GA-agent is better than a DE-agent with respect to co-evolution in bargaining game. In order to understand why a PSO-agent is the best among three kinds of artificial agents in the bargaining game, we observed the strategies of artificial agents after completion of game. The results indicated that the PSO-agent evolves in direction of the strategy to gain as much as possible at the risk of gaining no property upon failure of the transaction, while the GA-agent and the DE-agent evolve in direction of the strategy to accomplish the transaction regardless of the quantity.

Hierarchical Particle Swarm Optimization for Multi UAV Waypoints Planning Under Various Threats (다양한 위협 하에서 복수 무인기의 경로점 계획을 위한 계층적 입자 군집 최적화)

  • Chung, Wonmo;Kim, Myunggun;Lee, Sanha;Lee, Sang-Pill;Park, Chun-Shin;Son, Hungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.385-391
    • /
    • 2022
  • This paper presents to develop a path planning algorithm combining gradient descent-based path planning (GBPP) and particle swarm optimization (PSO) for considering prohibited flight areas, terrain information, and characteristics of fixed-wing unmmaned aerial vehicle (UAV) in 3D space. Path can be generated fast using GBPP, but it is often happened that an unsafe path can be generated by converging to a local minimum depending on the initial path. Bio-inspired swarm intelligence algorithms, such as Genetic algorithm (GA) and PSO, can avoid the local minima problem by sampling several paths. However, if the number of optimal variable increases due to an increase in the number of UAVs and waypoints, it requires heavy computation time and efforts due to increasing the number of particles accordingly. To solve the disadvantages of the two algorithms, hierarchical path planning algorithm associated with hierarchical particle swarm optimization (HPSO) is developed by defining the initial path, which is the input of GBPP, as two variables including particles variables. Feasibility of the proposed algorithm is verified by software-in-the-loop simulation (SILS) of flight control computer (FCC) for UAVs.

PMDV-hop: An effective range-free 3D localization scheme based on the particle swarm optimization in wireless sensor network

  • Wang, Wenjuan;Yang, Yuwang;Wang, Lei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.61-80
    • /
    • 2018
  • Location information of individual nodes is important in the implementation of necessary network functions. While extensive studies focus on localization techniques in 2D space, few approaches have been proposed for 3D positioning, which brings the location closer to the reality with more complex calculation consumptions for high accuracy. In this paper, an effective range-free localization scheme is proposed for 3D space localization, and the sensitivity of parameters is evaluated. Firstly, we present an improved algorithm (MDV-Hop), that the average distance per hop of the anchor nodes is calculated by root-mean-square error (RMSE), and is dynamically corrected in groups with the weighted RMSE based on group hops. For more improvement in accuracy, we expand particle swarm optimization (PSO) of intelligent optimization algorithms to MDV-Hop localization algorithm, called PMDV-hop, in which the parameters (inertia weight and trust coefficient) in PSO are calculated dynamically. Secondly, the effect of various localization parameters affecting the PMDV-hop performance is also present. The simulation results show that PMDV-hop performs better in positioning accuracy with limited energy.

Multi-Level Thresholding based on Non-Parametric Approaches for Fast Segmentation

  • Cho, Sung Ho;Duy, Hoang Thai;Han, Jae Woong;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.149-162
    • /
    • 2013
  • Purpose: In image segmentation via thresholding, Otsu and Kapur methods have been widely used because of their effectiveness and robustness. However, computational complexity of these methods grows exponentially as the number of thresholds increases due to the exhaustive search characteristics. Methods: Particle swarm optimization (PSO) and genetic algorithms (GAs) can accelerate the computation. Both methods, however, also have some drawbacks including slow convergence and ease of being trapped in a local optimum instead of a global optimum. To overcome these difficulties, we proposed two new multi-level thresholding methods based on Bacteria Foraging PSO (BFPSO) and real-coded GA algorithms for fast segmentation. Results: The results from BFPSO and real-coded GA methods were compared with each other and also compared with the results obtained from the Otsu and Kapur methods. Conclusions: The proposed methods were computationally efficient and showed the excellent accuracy and stability. Results of the proposed methods were demonstrated using four real images.