Browse > Article
http://dx.doi.org/10.3807/JOSK.2011.15.2.187

Directional Emission from Photonic Crystal Waveguide Output by Terminating with CROW and Employing the PSO Algorithm  

Bozorgi, Mahdieh (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Granpayeh, Nosrat (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Publication Information
Journal of the Optical Society of Korea / v.15, no.2, 2011 , pp. 187-195 More about this Journal
Abstract
We have designed two photonic crystal waveguide (PCW) structures with output focused beams in order to achieve more coupling between photonic devices and decrease the mismatch losses in photonic integrated circuits. PCW with coupled resonator optical waveguide (CROW) termination has been optimized by both one dimensional (1D) and seven dimensional (7D) particle swarm optimization (PSO) algorithms by evaluating the fitness function by the finite difference time domain (FDTD) method. The 1D and 7D-optimizations caused the factors of 2.79 and 3.875 improvements in intensity of the main lobe compared to the non-optimized structure, whereas the FWHM in 7D-optimized structure was increased, unlike the 1D case. It has also been shown that the increment of focusing causes decrement of the bandwidth.
Keywords
Photonic crystal waveguide; CROW; FDTD; Resonator; PSO;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupledresonator optical waveguides," Appl. Phys. B 86, 327-331 (2007).   DOI
2 Z. F. Li, A. Koray, and O. Ekmel, "Highly directional emission from photonic crystals with a wide bandwidth," Appl. Phys. Lett. 91, 121105-1-121105-3 (2007).   DOI   ScienceOn
3 I. Bulu, H. Caglayan, and E. Ozbay, "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078-3080 (2005).   DOI   ScienceOn
4 K. B. Chung, "Properties of surface modes used for directional emission from photonic crystal waveguides," J. Opt. Soc. Korea 12, 7-12 (2008).   과학기술학회마을   DOI   ScienceOn
5 K. B. Chung, "Effects of surface termination on directional emission from photonic crystal waveguides," J. Opt. Soc. Korea 12, 13-18 (2008).   과학기술학회마을   DOI   ScienceOn
6 A. R. M. Javan and N. Granpayeh, "Terahertz wave switch based on photonic crystal ring resonators," Opt. Quantum Electron. 40, 695-705 (2008).   DOI
7 C. S. Kee, D. K. Ko, and J. Lee, "Functional optical filters based on two-dimensional photonic crystals," Korean Phys. Soc. 48, 978-981 (2006).   과학기술학회마을
8 H. Kurt, "Limited-diffraction light propagation with axiconshape photonic crystals," J. Opt. Soc. Am. B 26, 981-986 (2009).   DOI   ScienceOn
9 H. Caglayan, I. Bulu, and E. Ozbay, "Beaming of electromagnetic waves emitted through a subwavelength annular aperture," J. Opt. Soc. Am. B 23, 419-422 (2006).   DOI   ScienceOn
10 E. Moreno, F. J. Garcia-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402-1-121402-4 (2004).   DOI
11 P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903-1-113903-4 (2004).   DOI   ScienceOn
12 H. Kurt, "Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits," IEEE Photon. Technol. Lett. 20, 1682-1684 (2008).   DOI   ScienceOn
13 S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 08111-1-08111-3 (2005).
14 W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Topology optimization of a photonic crystal waveguide termination to maximize directional emission," Appl. Phys. Lett. 86, 111114-1-111114-3 (2005).   DOI   ScienceOn
15 K. Umemori, Y. Kanamori, and K. Hane, "Photonic crystal waveguide switch with a microelectromechanical actuator," Appl. Phys. Lett. 89, 021102-1-021102-3 (2006).   DOI   ScienceOn
16 E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).   DOI   ScienceOn
17 S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).   DOI   ScienceOn
18 M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).   DOI   ScienceOn
19 Y. Sugimoto, S. Lan, S. Nishikawa, N. Ikeda, H. Ishikawa, and K. Asakawa, "Design and fabrication of impurity bandbased photonic crystal waveguides for optical delay lines," Appl. Phys. Lett. 81, 1946-1948 (2002).   DOI   ScienceOn
20 F. Afshinmanesh, A. Marandi, P. P. M. So, and R. Gordon, "Proposal for compact optical filters using large index step binary supergratings," IEEE Photon. Technol. Lett. 20, 676-678 (2008).   DOI   ScienceOn
21 M. Djavid, S. A. Mirtaheri, and M. S. Abrishamian, "Photonic crystal notch filter design using particle swarm optimization theory and finite difference time domain analysis," J. Opt. Soc. Am. B 26, 849-853 (2009).   DOI
22 J. Kennedy and W. M. Spears, "Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on multi modal problem generator," in Proc. IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence (Anchorage, AK, USA, 1998), pp. 28-83.   DOI
23 A. Marandi, F. Afshinmanesh, M. Shahabadi, and F. Bahrami, "Boolean particle swarm optimization and its application to the design of a dual-band dual-polarized planar antenna," in Proc. IEEE Conference on Evolutionary Computation (Vancouver, BC, Canada, 2006), pp. 3212-3218.   DOI
24 Y. Li, "Hybrid intelligent approach for modeling and optimization of semiconductor devices and nanostructures," Comput. Mater. Sci. 45, 41-51 (2009).   DOI   ScienceOn
25 B. S. Darki and N. Granpayeh, "Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method," Opt. Comm. 283, 4099-4103 (2010).   DOI   ScienceOn
26 W. Smigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430-1-205430-8 (2007).   DOI   ScienceOn
27 A. Marandi, F. Afshinmanesh, and P. P. M. So, "Design of a highly focused photonic crystal lens using boolean particle swarm optimization," in Proc. The 20th Annual Meeting of the IEEE Lasers and Electro-optics Society (LEOS) (Florida, USA, 2007), pp. 931-932.   DOI
28 M. S. Kumar, S. Menabde, S. Yu, and N. Park, "Directional emission from photonic crystal waveguide terminations using particle swarm optimization," J. Opt. Soc. Am. B 27, 343-349 (2010).   DOI   ScienceOn
29 J. Robinson and Y. R-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag. 52, 397-407 (2004).   DOI   ScienceOn
30 H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008).   DOI   ScienceOn
31 W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Geometry projection method for optimizing photonic nanostructures," Opt. Lett. 32, 77-79 (2007).   DOI   ScienceOn
32 L. Jiang, H. Li, W. Jia, X. Li, and Z. Shen, "Genetic optimization of photonic crystal waveguide termination for both on-axis and off-axis highly efficient directional emission," Opt. Express 17, 10126-10135 (2009).   DOI
33 J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proc. IEEE International Conference on Neural Networks (Piscataway, NJ, USA, 1995), pp. 1942-1948.
34 J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence (Academic, San Francisco, USA, 2001).
35 S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," PIER 79, 353-366 (2008).   DOI
36 F. T. S. Chan and M. K. Tiwari, Swarm Intelligence Focus on Ant and Particle Swarm Optimization (I-Tech Education and Publishing, Vienna, Austria, 2007).
37 N. Nedjah, L. S. Coelho, and M. Mourelle, Swarm Intelligent Systems (Springer-Verlag Berlin Heidelberg, New York, USA, 2006).
38 Y. Li, D. Yao, J. Yao, and W. Chen, "A particle swarm optimization algorithm for beam angle selection in intensitymodulated radiotherapy planning," Phys. Med. Biol. 50, 3491-3514 (2005).   DOI   ScienceOn
39 M. Bozorgi and N. Granpayeh, "Duality of photonic crystal radiative structures and antenna arrays," J. Opt. Soc. Korea 14, 438-443 (2010).   과학기술학회마을   DOI   ScienceOn
40 Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110-1-105110-5 (2008).   DOI   ScienceOn
41 R. Moussa, B. Wang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, "Effect of beaming and enhanced transmission in photonic crystals," Phys. Rev. B 76, 235417-1-235417-8 (2007).   DOI   ScienceOn
42 D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120-1-131120-3 (2006).   DOI   ScienceOn
43 H. Chen, Y. Zeng, X. Chen, J. Wang, and W. Lu, "Modulation of focus using photonic crystal waveguide," Phys. Lett. A 372, 5096-5100 (2008).   DOI   ScienceOn
44 Q. Wang, J. Zhang, C. Yan, and Y. Cui, "Beaming effect in multimode photonic crystal by using coupled waveguides," Phys. Lett. A 373, 1097-1100 (2009).   DOI   ScienceOn
45 H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114-1-092114-3 (2008).   DOI   ScienceOn
46 W. Y. Liang, J. W. Dong, and H. Z. Wang, "Directional emitter and beam splitter based on self-collimation effect," Opt. Express 15, 1234-1239 (2007).   DOI
47 L. Jiang, W. Jia, H. Li, X. Li, C. Cong, and Z. Shen, "Inverse design for directional emitter and power splitter based on photonic crystal waveguide with surface corrugations," J. Opt. Soc. Am. B 26, 2157-2160 (2009).   DOI
48 D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).   DOI
49 C. C. Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tünnermann, "Directional emission from photonic crystal waveguides," Opt. Express 14, 2423-2428 (2006).   DOI
50 D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120-1-131120-3 (2006).   DOI   ScienceOn
51 Y. L. Zhang, Y. Zhang, and B. J. Li, "Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides," Opt. Express 15, 9281-9286 (2007).   DOI