• Title/Summary/Keyword: PSO (Particle Swarm Optimization) Algorithm

Search Result 329, Processing Time 0.026 seconds

Design of Solving Similarity Recognition for Cloth Products Based on Fuzzy Logic and Particle Swarm Optimization Algorithm

  • Chang, Bae-Muu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4987-5005
    • /
    • 2017
  • This paper introduces a new method to solve Similarity Recognition for Cloth Products, which is based on Fuzzy logic and Particle swarm optimization algorithm. For convenience, it is called the SRCPFP method hereafter. In this paper, the SRCPFP method combines Fuzzy Logic (FL) and Particle Swarm Optimization (PSO) algorithm to solve similarity recognition for cloth products. First, it establishes three features, length, thickness, and temperature resistance, respectively, for each cloth product. Subsequently, these three features are engaged to construct a Fuzzy Inference System (FIS) which can find out the similarity between a query cloth and each sampling cloth in the cloth database D. At the same time, the FIS integrated with the PSO algorithm can effectively search for near optimal parameters of membership functions in eight fuzzy rules of the FIS for the above similarities. Finally, experimental results represent that the SRCPFP method can realize a satisfying recognition performance and outperform other well-known methods for similarity recognition under considerations here.

Optimal Power Scheduling in Multi-Microgrid System Using Particle Swarm Optimization

  • Pisei, Sen;Choi, Jin-Young;Lee, Won-Poong;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1329-1339
    • /
    • 2017
  • This paper presents the power scheduling of a multi-microgrid (MMG) system using an optimization technique called particle swarm optimization (PSO). The PSO technique has been shown to be most effective at solving the various problems of the economic dispatch (ED) in a power system. In addition, a new MMG system configuration is proposed in this paper, through which the optimal power flow is achieved. Both optimization and power trading methods within an MMG are studied. The results of implementing PSO in an MMG system for optimal power flow and cost minimization are obtained and compared with another attractive and efficient optimization technique called the genetic algorithm (GA). The comparison between these two effective methods provides very competitive results, and their operating costs also appear to be comparable. Finally, in this study, power scheduling and a power trading method are obtained using the MATLAB program.

Enhancement OLSR Routing Protocol using Particle Swarm Optimization (PSO) and Genrtic Algorithm (GA) in MANETS

  • Addanki, Udaya Kumar;Kumar, B. Hemantha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.131-138
    • /
    • 2022
  • A Mobile Ad-hoc Network (MANET) is a collection of moving nodes that communicate and collaborate without relying on a pre-existing infrastructure. In this type of network, nodes can freely move in any direction. Routing in this sort of network has always been problematic because of the mobility of nodes. Most existing protocols use simple routing algorithms and criteria, while another important criterion is path selection. The existing protocols should be optimized to resolve these deficiencies. 'Particle Swarm Optimization (PSO)' is an influenced method as it resembles the social behavior of a flock of birds. Genetic algorithms (GA) are search algorithms that use natural selection and genetic principles. This paper applies these optimization models to the OLSR routing protocol and compares their performances across different metrics and varying node sizes. The experimental analysis shows that the Genetic Algorithm is better compared to PSO. The comparison was carried out with the help of the simulation tool NS2, NAM (Network Animator), and xgraph, which was used to create the graphs from the trace files.

PAPR Reduction of an OFDM Signal by use of PTS scheme with MG-PSO Algorithm (MG-PSO 알고리즘을 적용한 PTS 기법에 의한 OFDM 신호의 PAPR 감소)

  • Kim, Wan-Tae;Yoo, Sun-Yong;Cho, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • OFDM(Orthogonal Frequency Division Multiplexing) system is robust to frequency selective fading and narrowband interference in high-speed data communications. However, an OPDM signal consists of a number of independently modulated subcarriers and the superposition of these subcarriers causes a problem that can give a large PARR(Peak-to-Average Power Ratio). PTS(Partial Transmit Sequence) scheme can reduce the PAPR by dividing OFDM signal into subblocks and then multiplying the phase weighting factors to each subblocks, but computational complexity for selecting of phase weighting factors increases exponentially with the number of subblocks. Therefore, in this paper, MG-PSO(Modified Greedy algorithm-Particle Swarm Optimization) algorithm that combines modified greedy algorithm and PSO(Particle Swarm Optimization) algorithm is proposed to use for the phase control method in PTS scheme. This method can solve the computational complexity and guarantee to reduce PAPR. We analyzed the performance of the PAPR reduction when we applied the proposed method to telecommunication systems.

Blind Audio Source Separation Based On High Exploration Particle Swarm Optimization

  • KHALFA, Ali;AMARDJIA, Nourredine;KENANE, Elhadi;CHIKOUCHE, Djamel;ATTIA, Abdelouahab
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2574-2587
    • /
    • 2019
  • Blind Source Separation (BSS) is a technique used to separate supposed independent sources of signals from a given set of observations. In this paper, the High Exploration Particle Swarm Optimization (HEPSO) algorithm, which is an enhancement of the Particle Swarm Optimization (PSO) algorithm, has been used to separate a set of source signals. Compared to PSO algorithm, HEPSO algorithm depends on two additional operators. The first operator is based on the multi-crossover mechanism of the genetic algorithm while the second one relies on the bee colony mechanism. Both operators have been employed to update the velocity and the position of the particles respectively. Thus, they are used to find the optimal separating matrix. The proposed method enhances the overall efficiency of the standard PSO in terms of good exploration and performance. Based on many tests realized on speech and music signals supplied by the BSS demo, experimental results confirm the robustness and the accuracy of the introduced BSS technique.

Maximum Power Point Tracking of Photovoltaic using Improved Particle Swarm Optimization Algorithm (개선된 입자 무리 최적화 알고리즘 이용한 태양광 패널의 최대 전력점 추적)

  • Kim, Jae-Jung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.291-298
    • /
    • 2020
  • This study proposed a model that can track MPP faster than the existing MPPT algorithm using the particle swarm optimization algorithm (PSO). The proposed model highly sets the acceleration constants of gbest and pbest in the PSO algorithm to quickly track the MPP point and eliminates the power instability problem. In addition, this algorithm was re-executed by detecting the change in power of the solar panel according to the rapid change in solar radiation. As a result of the experiment, MPP time was 0.03 seconds and power was 131.65 for 691.5 W/m2, and MPP was tracked at higher power and speed than the existing P&O and INC algorithms. The proposed model can be applied when a change in the amount of power is detected by partial shading in a Photovoltaic power plant with Photovoltaic connected in parallel. In order to improve the MPPT algorithm, this study needs a comparative study on optimization algorithms such as moth flame optimization (MFO) and whale optimization algorithm (WOA).

Implementation of PSO(Particle Swarm Optimization) Algorithm using Parallel Processing of GPU (GPU의 병렬 처리 기능을 이용한 PSO(Particle Swarm Optimization) 알고리듬 구현)

  • Kim, Eun-Su;Kim, Jo-Hwan;Kim, Jong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.181-182
    • /
    • 2008
  • 본 논문에서는 연산 최적화 알고리듬 중 PSO(Particle Swarm Optimization) 알고리듬을 NVIDIA사(社)에서 제공한 CUDA(Compute Unified Device Architecture)를 이용하여 새롭게 구현하였다. CUDA는 CPU가 아닌 GPU(Graphic Processing Unit)의 다양한 병렬 처리 능력을 사용해 복잡한 컴퓨팅 문제를 해결하는 소프트웨어 개발을 가능케 하는 기술이다. 이 기술을 연산 최적화 알고리듬 중 PSO에 적용함으로써 알고리듬의 수행 속도를 개선하였다. CUDA를 적용한 PSO 알고리듬의 검증을 위해 언어 기반으로 프로그래밍하고 다양한 Test Function을 통해 시뮬레이션 하였다. 그리고 기존의 PSO 알고리듬과 비교 분석하였다. 또한 알고리듬의 성능 향상으로 여러 가지 최적화 분야에 적용 할 수 있음을 보인다.

  • PDF

Layered-earth Resistivity Inversion of Small-loop Electromagnetic Survey Data using Particle Swarm Optimization (입자 군집 최적화법을 이용한 소형루프 전자탐사 자료의 층서구조 전기비저항 역해석)

  • Jang, Hangilro
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.186-194
    • /
    • 2019
  • Deterministic optimization, commonly used to find the geophysical inverse solutions, have its limitation that it cannot find the proper solution since it might converge into the local minimum. One of the solutions to this problem is to use global optimization based on a stochastic approach, among which a large number of particle swarm optimization (PSO) applications have been introduced. In this paper, I developed a geophysical inversion algorithm applying PSO method for the layered-earth resistivity inversion of the small-loop electromagnetic (EM) survey data and carried out numerical inversion experiments on synthetic datasets. From the results, it is confirmed that the PSO inversion algorithm could increase the inversion success rate even when attempting the inversion of small-loop EM survey data from which it might be difficult to find a best solution by applying the Gauss-Newton inversion algorithm.

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.