• Title/Summary/Keyword: PSO(Particle Swarm Optimization)

Search Result 501, Processing Time 0.024 seconds

Optimal Capacitor Placement Considering Voltage-stability Margin with Hybrid Particle Swarm Optimization

  • Kim, Tae-Gyun;Lee, Byong-Jun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.786-792
    • /
    • 2011
  • The present paper presents an optimal capacitor placement (OCP) algorithm for voltagestability enhancement. The OCP issue is represented using a mixed-integer problem and a highly nonlinear problem. The hybrid particle swarm optimization (HPSO) algorithm is proposed to solve the OCP problem. The HPSO algorithm combines the optimal power flow (OPF) with the primal-dual interior-point method (PDIPM) and ordinary PSO. It takes advantage of the global search ability of PSO and the very fast simulation running time of the OPF algorithm with PDIPM. In addition, OPF gives intelligence to PSO through the information provided by the dual variable of the OPF. Numerical results illustrate that the HPSO algorithm can improve the accuracy and reduce the simulation running time. Test results evaluated with the three-bus, New England 39-bus, and Korea Electric Power Corporation systems show the applicability of the proposed algorithm.

Application of Adaptive Particle Swarm Optimization to Bi-level Job-Shop Scheduling Problem

  • Kasemset, Chompoonoot
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • This study presents an application of adaptive particle swarm optimization (APSO) to solving the bi-level job-shop scheduling problem (JSP). The test problem presented here is $10{\times}10$ JSP (ten jobs and ten machines) with tribottleneck machines formulated as a bi-level formulation. APSO is used to solve the test problem and the result is compared with the result solved by basic PSO. The results of the test problem show that the results from APSO are significantly different when compared with the result from basic PSO in terms of the upper level objective value and the iteration number in which the best solution is first identified, but there is no significant difference in the lower objective value. These results confirmed that the quality of solutions from APSO is better than the basic PSO. Moreover, APSO can be used directly on a new problem instance without the exercise to select parameters.

Generating unit Maintenance Scheduling based on PSO Algorithm (PSO알고리즘에 기초한 발전기 보수정지)

  • Park, Young-Soo;Kim, Jin-Ho;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.222-224
    • /
    • 2006
  • This paper addresses a particle swarm optimization-based approach for solving a generating unit maintenance scheduling problem(GMS) with some constraints. We focus on the power system reliability such as reserve ratio better than cost function as the objective function of GMS problem. It is shown that particle swarm optimization-based method is effective in obtaining feasible schedules such as GMS problem related to power system planning and operation. In this paper, we find the optimal solution of the GMS problem within a specific time horizon using particle swarm optimization algorithm. Simple case study with 16-generators system is applicable to the GMS problem. From the result, we can conclude that PSO is enough to look for the optimal solution properly in the generating unit maintenance scheduling problem.

  • PDF

Prediction of Surface Roughness and Electric Current Consumption in Turning Operation using Neural Network with Back Propagation and Particle Swarm Optimization (BP와 PSO형 신경회로망을 이용한 선삭작업에서의 표면조도와 전류소모의 예측)

  • Punuhsingon, Charles S.C;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents a method of predicting the machining parameters on the turning process of low carbon steel using a neural network with back propagation (BP) and particle swarm optimization (PSO). Cutting speed, feed rate, and depth of cut are used as input variables, while surface roughness and electric current consumption are used as output variables. The data from experiments are used to train the neural network that uses BP and PSO to update the weights in the neural network. After training, the neural network model is run using test data, and the results using BP and PSO are compared with each other.

A Study on Tuning of Current Controller for Grid-connected Inverter Using Particle Swarm Optimization (PSO를 이용한 계통연계형 인버터 전류제어기의 자동조정에 관한 연구)

  • Ahn Jong-Bo;Kim Won-gon;Hwang Ki-Hyun;Park Jun-H
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.671-679
    • /
    • 2004
  • This paper presents the on-line current controller tuning method of grid-connected inverter using PSO(particle swarm optimization) technique for minimizing the harmonic current. Synchronous frame PI current regulator is commonly used in most distributed generation. However, due to the source voltage distortion, specially in weak AC power system, current may contain large harmonic components, which increase THD(total harmonic distortion) and deteriorates power quality. Therefore, some tuning method is necessary to improve response of current controller. This paper used the PSO technique to tune the current regulator and through simulation and experiments, usefulness of the tuning method has been verified. Especially in simulating the tuning process, ASM(average switching model) of inverter is used to shorten execution time.

On Convergence and Parameter Selection of an Improved Particle Swarm Optimization

  • Chen, Xin;Li, Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.559-570
    • /
    • 2008
  • This paper proposes an improved particle swarm optimization named PSO with Controllable Random Exploration Velocity (PSO-CREV) behaving an additional exploration behavior. Different from other improvements on PSO, the updating principle of PSO-CREV is constructed in terms of stochastic approximation diagram. Hence a stochastic velocity independent on cognitive and social components of PSO can be added to the updating principle, so that particles have strong exploration ability than those of conventional PSO. The conditions and main behaviors of PSO-CREV are described. Two properties in terms of "divergence before convergence" and "controllable exploration behavior" are presented, which promote the performance of PSO-CREV. An experimental method based on a complex test function is proposed by which the proper parameters of PSO-CREV used in practice are figured out, which guarantees the high exploration ability, as well as the convergence rate is concerned. The benchmarks and applications on FCRNN training verify the improvements brought by PSO-CREV.

Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization

  • Azab, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the $23^{rd}$ from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.

Blind Audio Source Separation Based On High Exploration Particle Swarm Optimization

  • KHALFA, Ali;AMARDJIA, Nourredine;KENANE, Elhadi;CHIKOUCHE, Djamel;ATTIA, Abdelouahab
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2574-2587
    • /
    • 2019
  • Blind Source Separation (BSS) is a technique used to separate supposed independent sources of signals from a given set of observations. In this paper, the High Exploration Particle Swarm Optimization (HEPSO) algorithm, which is an enhancement of the Particle Swarm Optimization (PSO) algorithm, has been used to separate a set of source signals. Compared to PSO algorithm, HEPSO algorithm depends on two additional operators. The first operator is based on the multi-crossover mechanism of the genetic algorithm while the second one relies on the bee colony mechanism. Both operators have been employed to update the velocity and the position of the particles respectively. Thus, they are used to find the optimal separating matrix. The proposed method enhances the overall efficiency of the standard PSO in terms of good exploration and performance. Based on many tests realized on speech and music signals supplied by the BSS demo, experimental results confirm the robustness and the accuracy of the introduced BSS technique.

Design of Fractional Order Controller Based on Particle Swarm Optimization

  • Cao, Jun-Yi;Cao, Bing-Gang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.775-781
    • /
    • 2006
  • An intelligent optimization method for designing Fractional Order PID(FOPID) controllers based on Particle Swarm Optimization(PSO) is presented in this paper. Fractional calculus can provide novel and higher performance extension for FOPID controllers. However, the difficulties of designing FOPID controllers increase, because FOPID controllers append derivative order and integral order in comparison with traditional PID controllers. To design the parameters of FOPID controllers, the enhanced PSO algorithms is adopted, which guarantee the particle position inside the defined search spaces with momentum factor. The optimization performance target is the weighted combination of ITAE and control input. The numerical realization of FOPID controllers uses the methods of Tustin operator and continued fraction expansion. Experimental results show the proposed design method can design effectively the parameters of FOPID controllers.

Distributed Sensor Node Localization Using a Binary Particle Swarm Optimization Algorithm (Binary Particle Swarm Optimization 알고리즘 기반 분산 센서 노드 측위)

  • Fatihah, Ifa;Shin, Soo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.9-17
    • /
    • 2014
  • This paper proposes a binary particle swarm optimization (BPSO) algorithm for distributed node localization in wireless sensor networks (WSNs). Each unknown node performs localization using the value of the measured distances from three or more neighboring anchors, i.e., nodes that know their location information. The node that is localized during the localization process is then used as another anchor for remaining nodes. The performances of particle swarm optimization (PSO) and BPSO in terms of localization error and computation time are compared by using simulations in Matlab. The simulation results indicate that PSO-based localization is more accurate. In contrast, BPSO algorithm performs faster for finding the location of unknown nodes for distributed localization. In addition, the effects of transmission range and number of anchor nodes on the localization error and computation time are investigated.