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On Convergence and Parameter Selection of an Improved Particle
Swarm Optimization

Xin Chen and Yangmin Li*

Abstract: This paper proposes an improved particle swarm optimization named PSO with
Controllable Random Exploration Velocity (PSO-CREV) behaving an additional exploration
behavior. Different from other improvements on PSO, the updating principle of PSO-CREV is
constructed in terms of stochastic approximation diagram. Hence a stochastic velocity
independent on cognitive and social components of PSO can be added to the updating principle,
so that particles have strong exploration ability than those of conventional PSO. The conditions
and main behaviors of PSO-CREV are described. Two properties in terms of “divergence before
convergence” and “controllable exploration behavior” are presented, which promote the
performance of PSO-CREV. An experimental method based on a complex test function is
proposed by which the proper parameters of PSO-CREV used in practice are figured out, which
guarantees the high exploration ability, as well as the convergence rate is concerned. The
benchmarks and applications on FCRNN training verify the improvements brought by PSO-
CREV.
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1. INTRODUCTION

Particle swarm optimization (PSO) is inspired from
studies of social behavior among ants and birds [1,2].
Now it has been widely used to solve non-linear and
multi-objective problems, such as optimization of
weights of NN, electrical utility, computer games, and
mobile robots, etc. [3-6].

As a recursive algorithm, the PSO algorithm
simulates social behavior among individuals
(particles) “flying” through a multidimensional search
space, where each particle represents a point at the
intersection of all search dimensions. Considering
movements of particles, PSO is always modeled as
second order systems in continuous-time version [7]
or discrete-time versions [8-11]. Because these
researches are based on a kind of reduced system [8],
in which all stochastic factors are simplified, it is
difficult to analyze the stochastic behavior of PSO.

The first significant improvement is the inertia
weight [12], which results in faster convergence.
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Another  significant improvement about PSO
convergence is the constrict coefficient [8], which
ensures the convergence of PSO. In fact, almost all
improvements on PSO are based on these two basic
improvements.

Normally the improvements on PSO are referred to
two aspects: promoting convergence rate and avoiding
local minima or prematurity, especially the latter one.
Obviously to promote exploration ability of particles
is the direct way to drive particles out of local minima.
Hence many improvements are proposed to improve
PSOs exploration ability. For example, in cooperative
PSO [13], several swarms work together to optimize
different components of the solution vector
cooperatively, so that there are more chances to find
the global best solution. On the other hand, in order to
drive particles to unknown subspace, a kind of
mutation, or similar operation, is introduced to PSO,
such as MPSO [14] and GCPSO [15], where some
particles are selected to change their positions
randomly, so that they may reach some unknown
solution space. Moreover to improve search ability,
hybrid PSO algorithms with other optimization
techniques, such as GAs [3] and chaotic search [16],
etc., are developed.

These improvements about PSO have a character
that no matter how additional operations are employed,
all of them use the basic updating principles with
inertia weight or constrict coefficient to adjust
particles positions. In this paper, we propose a novel
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PSO algorithm which results from the direct
modification on conventional PSO structure, where
two major modifications are introduced.

On one hand, a decreasing proportional coefficient
is introduced to PSO. Such a decreasing coefficient
results in several modifications on PSO structure, so
that the new PSQO is convergent.

On another hand, a random exploration velocity is
introduced into the new PSO. Since this random
velocity plays a very important role, the new PSO
algorithm is named PSO with Controllable Random
Exploration Velocity (PSO-CREV).

The rest of this paper is organized as follows. In
Section 2, we introduce the motivation of PSO-CREV
diagram. And the description on PSO-CREV is
introduced in form of a theorem. In Section 3
convergence of PSO-CREYV is proved using the theory
of stochastic approximation [17,18]. And based on the
proof, two important properties induced by stochastic
components of PSO-CREV are summarized. To
choose proper values of parameters of PSO-CREYV, an
experiment is employed in Section 4 where
parameters are determined according to experimental
results. Experimental settings for the benchmarks and
simulation results are introduced in Section 5 and a
practical implementation of PSO-CREV in NN
training is presented in Section 6. Finally conclusions
are drawn in Section 7.

2. MOTIVATION AND DEFINITION
OF PSO-CREV

2.1. Concept and constraints of conventional PSO
Iflet M denote the size of the swarm, the current

position of particle i is denoted by X;=[X;; X,
---XI-D]T, i=1,2,---,M, where D is the dimension

of the solution space, and its current velocity is
denoted by v;. Then the updating principle is
expressed as

Vig(n+1) = vy () + ey g (M B3 (0) = X 1 (n)]

+Corya(MIBg (m) = X g (M),
Kig(n+1) = Xjq(n) +vig(n+1), @)

(1)

where d=1,---,D, #n,;~U(0,1) and r, ~U(0,1)
represent the two random numbers within [0,1]; ¢};

and c¢,; represent the acceleration coefficients;

P,-d (n) represents the best position found by particle i

so far, P®(n) represents the global best position
found by particle i’s neighborhood.
Two random variables r; and r; are employed

to realize exploration. But the intension of exploration
behavior is totally determined by the decreasing rate

T Y Particle's position after update, X(n+1)

-
L

of PSO-CREV, where a
vi(n+1) adjusts the

search direction of the particle.

Fig. 1. The concept
stochastic  velocity

of cognitive and social components. Thus if a swarm
converges quickly to a certain position maybe not the
global best solution, particles also give up attempts for
exploration. Then particles are stagnated at local
minima.

To overcome this disadvantage, an additional
exploration behavior looks very helpful to pull
particles out of local minima. Just as shown in Fig. 1,

where v, (n+1) represents the velocity of a particle
after conventional updating principle, i.e., the velocity
determined by P%(n) and P(n). There is a random
velocity denoted by v,(n+1) added to v.(n+1),

so that a new velocity v(n+1) is obtained, which

drives particle to search other direction. Even if
Pd(n)—X (n) and P®(n)-X(n) decrease quickly,
the particle can maintain exploration ability.

In a sense, this velocity is viewed as a disturbance
to the system, which must affect the convergence of
the system. To ensure convergence of the system, an
additional operation suppressing this random variable
(denoted by &(n) in this paper) is necessary. In the
following subsection, the motivation of PSO-CREV is
introduced, which is based on a modified reduced
system.

2.2. Modifications on the Conventional PSO

Modification 1: A decreasing &£(n) is added into
the expression of updating velocity, which goes to
ZEro as n —> .

If let Y(n)=X(n)— P, where P represents the
best solution found so far, the reduced system, or
implicit representation (IR) [8] is expressed as follow,
where the subscript i is omitted for brevity.

v(n+1)=gv(n) - egY(n)

Y B 3)
(n+1)=¢ev(n)+(1-ep)Y(n)).
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It is easy to obtain the characteristic polynomial of the
system as follows

Z2 +(ep-1-€)Z +& =0. 4)

Hence the eigenvalues are expressed as

l4s-gpry(+s-ep) —de

5 (%)

€2

Consequently from the root locus of the reduced
system shown in Fig. 2, it is observed that no matter
what ¢ equals, as &(n) is approaching to 0, the
roots go into a unit circle in form of complex roots,
and finally converge to two real roots 0 and 1.

According to the stability theorem of discrete
system, along with decreasing &(n), one of two
roots will converge to 1, so that the system maintains
sustained oscillation ultimately with frequency 1. That
means the reduced system is nonconvergent. To
overcome this drawback, the second modification is
introduced as follows.

Modification 2: A positive coefficient a is added
to the expression of updating position, which is less
than 1. Hence the reduced system is changed into

v(n+1) = gv(n) - ¥ (n),

o (6)
(n+1)=ev(n)+(a — &)Y (n)).

Consequently both roots converge to ¢ and 0, so
that the reduced system is convergent.
Now extend the reduced system (6) to the updating

P +g,P8

iy
where ¢ =c and @, =cyry, & is substituted by
g(n), and ¢ is substituted by ¢ +4,. Hence (6)
is expressed as

principle of PSO, P is substituted by

v(n+1) = s(mv(n) + o (P - X (n))
+¢yn (P8 - X(n)),

1=a 4 pd 14, p8)

X(n+1)=aX(n)+v(n+l)+¢l vy

Comparing with the conventional PSO algorithm,
there exists an additional term on the right hand of
position updating. Based on above analysis, a
complete definition of the novel PSO algorithm is
expressed as the following theorem.

2.3. Definition of PSO with Controllable Random
Exploration Velocity (PSO-CREV)

Theorem 1: A PSO with Controllable Random

Exploration Velocity (PSO-CREV) is described as

follows. Let F (n) be a sequence of sub- o -algebra

of F such that F (n)c F (n+1), for all n For
a swarm including M particles, the position of
xiD]T7
where D represents the dimension of swarm space.

The updating principle for individual particle is
defined as

particle i is defined as X; =[x; x,

via (n-+1) = £(m) 1 (1) + e (NY(B () = Xia ()

+earig ((BS () = Xy (m) + &g (),
X,-d(l’l +1) == aXid(n)‘i'Vid(n +1)

l-a (t1iq (W PG (1) + cyraig (WP (),

.
$,a(n)
@)

where d =1,---,D, ¢ and ¢, are positive constants;

nq(n) and ryy(n) are F (n)-measurable random
variables; Pid(rz) represents the best position that
particle i has found so far, which is of the form
Ed(n)=argminkgn F(X;(k)), where F(-) represents
a fitness function to be decreased; P2 (n) represents
the best position found by particle i’s neighborhood,
which is of the form Pf (n)=arg$gF(X 7(m);

9 (n) = ;(n) + ¢, (n), where ¢;(n)=cyn;(n), ¢y (n)
=Cyry; (n).
Suppose the following assumptions hold:
1) &(n) is a bounded random variable with
continuous uniform distribution. It has a constant
expectation denoted by E; = E¢(n);

o0
2) &(n)—>0 with »n increasing, and Zg(n):oo;
n=1

3) O<ax<i;
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4) ny(n) and ry;y(n) are independent random
variables satisfying continuous uniform distribu-
tion in [0,1], or n;,; ~UO1) and ryy~
U(0,1). And denote ®@;; =E¢;(n) and @,; =
Eg,;(n) respectively.

Then swarm must converge with probability one.

Let P" =inf _ RD) F(A) represent the global optimal
solution. Then swarm converges to P if
lim P?(n) —» P* and hm PE(n)—> P".

n-r%

Because the stochastw propertles are all ignored in
the reduced system, we apply the theory about
stochastic approximation to prove the convergence of
the improved PSO paradigm.

3. CONVERGENCE AND PROPERTIES
OF PSO-CREV

3.1. Convergence of PSO-CREV

A new relative position is defined as Y(n)
= X(n)- P*. Substitute it into (7), and change (7)
into

v(n+1)

=v(n) +[-(~e(m)v(n) - e(m)p(m)Y (n)

+ &M (MO (n) + by (MOF (n) + £(M)E (M),
Y(n+1)
=Y +(@-DY(n)+v(n+1)

m(ﬁ (MO (n) + 6, (mQ¥ (m)

=Y(n)+ [—(1 —a+e(mp)Y(n)+ e(mw(n)

+1 —a +e(n)g(n)

e (¢1(”)Qd(”)+¢z(”)Qg('?))}

®)
where Q9(n)=P%(n)-P", Q%(n)=P%(n)-P".
According to the updating of Pd(n) and P%(n),

”Qd(n)” and ”Qg (n)“ are nonincreasing over

iterations, if P* denotes the global best solution.

If let  Q"(n)=gsTAMO" (m)+ 4 ()5 ()],

Bl
iterations. Let
o) =[v(n) Zm)]" =[v(n) Y(n)-E,Q0" ()],

where E, denotes the expectation conditioned on
the o -algebra F, . Then it follows that

n} must be nonincreasing over

O(n+1)=6(n)+e(mH(n), )]
where H(n)= ﬁ[hl hY, where

by =—(1-e(m)v(n) - (n)g(n)Z(n)
+e(mgmIQ (n) - E,Q" (m)]+em)é(n),

hy ==(1-a +sm)g(n))Z(n) + &(n)v(n)
+(1-a +emg(m)-[Q" (n) - E,Q" (n)].

A Lyapunov function candidate is defined as

L(6(n ))_—HT{ }9_—@ (n)+ ®Z%(n)), (10)

0@

where @ =E(g).

3.1.1 Properties on the derivative of Lyapunov
function

Let y(n)=E,H(n). If E|H(n)|<, we have

~(1- &(n))v(n) — (nM)®@Z(n) + e(mE
7im= (n} —(1—a+e(n)®Z(n)+ e(nyv(n) |
(11)

Using a truncated Taylor series expansion, we have
E,L{0(n+1)~L(6(m) = () (4(m)(9)
1 0
+En(82(n)8(n)T{0 (D}H(n)]. (12)

Calculating the first term on the right side of (12)
yields
T
Lo (9('1)}’(”)

_ﬁE AT (WA= 2()V(m) + £(DZ(n) - £(M)E]

—0ZT (- a + e(MP)Z(n) - e(n)v(n)]}
=~y ld- (M) + @1 -+ e(n®)|Z(n)|
—Ey (n)g(n)]. (13)
_— T{x 0}
Let (H(n))® denote H(n) 0 @ H(n). After
some calculations, we have

E[[Am]Fen]

- -21—)E @M +a |z
n

O () -E,0 ) +ememy  (14)

+ag (n! (M) Z (1) + as(m[Q (n)—E, Q" (n)]
+ag(MEM)},

+asy(n)
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where
a(n) = (1- e(n))* + de*(n),
ay(n) = D1 - & + (m(m))* + (£(m)p(m))’,
a3 () = O(1 - a + £(n)p(n)) +(e(mpm)*,
ay(n) = 2e(m(n)(1 - &(n)) - (1 - & + e(m)p(n)],
as(n) =2 @e(n)(1 - a + £(n)p(n)
~ e(mp(n)(1 - e(m) P (n)
~ 2D - a + ()’ + > (mg* (]2 (n),
ag(n)=-2&(m){(1- e’ (n) + e(m)p(m)Z" (n)
~ s(P([Q" (n) - E, 0" (m] }.
Substituting (13) and (i4) into (12), and using
inequality ||uv{] < %(nun2 +}]v{]z), we obtain
E,L(O(n+1))— L(8(n))
<bm)f + by |z

+E, {%(n)\ Q' (n)-E,Q0" (n)]}z} (15)
+E, | by(n)(Q"(n) - E,0" (n)

+bs(mE,, ||,

where

b(m)=-Le(m)+& (M2 +®)+ %6 (),

by(n) = -®a(l- @) - e(n)a® - 26(n)E,[¢(n)]]
+Je(m)fa -1+ ®)e(n)],

by(n) = (1 - a +&(md(m)” +((n)g(n))’,

by(n) = 2[@e(n)(1 - & + £(m)p(n))
— e(md(n)(1 - )P (n)
—2AD(1 - a + e(n)d(n))*
+&* (mg* (2" (),

bs(n) =L e(n) + 26 (n).

Obviously at beginning, if &(n) is large enough,
b{n) and by,(n) must be positive so that E L
(B(n+1))— L(O(m) 2 0. Since £2(n) and &¥*(n)
decrease faster than &£(n), when n is large enough,

b(n) and b,(n) are negative. Along with n — oo,
E, [5,(0(Q" (1)~ E,0" (1) | >0, and BE, [0
— 0. That means that there exists N, <oo such that

when n>N,, there is a positive non-decreasing
function k(€(n)) to satisfy

E,L(6(n+1)) - L(O(n))

(16)

<—k(O(n) +E, {bﬂn) 0" (- E,0" (n)}ﬂ.

For a large n, (16) implies that the right side of
(16) is negative outside of a neighborhood of the set

{9 |k(6()) <E, {z@ mlo ©)-E,0 (z)uz 1} . Outside

such decreasing neighborhood, L(#(n)) has the

supermartingale property. Then supermartingale
convergence theorem implies that neighborhood of the

2
set {mk(e(r)):En {ba(n) 0'()-E, 0" }} is
recurrent, that is, &(») returns to it infinitely often

o' (n-

with probability one. Since E, [b_o,(n)

E,Q (r)ﬂ S o(1-a)E, |07 ()-E,0" (r)1|2 as n—
o, @(n) returns to neighborhood of {&|k(6(?)) =

@(1-a)E,

n—> 0.

2
Q‘”(t)—EnQr(f)”} infinitely often as

3.1.2 Proof on bound of E|H (n)||2

For n<N,, where N, is defined as above, the

proof of the bound of E|H (n)”2 is very similar to
that of Lemma 5.4.1 in [18]. From (13) and (14), we
observe that if &£(n) <o, EHH (n)]l2 and E{LQT
(B(m)y(n))] are growing at most as 0(16‘12).
Therefore there are two positive constants K; and
K, such that

E|Hm)| +ElLy T (B(n)y ()] < K, L(O(n) + K.

(17)
Firstly considering that EL(6(0))<o and (17),

we know that E“H(O)”2 <o, Suppose that
EL(O(n))<w for some n. Then E|H(n)| <.

Using truncated Taylor series expansion shown in (12),
(17) implies that there is a real K3 such that the right

side of (12) is bounded above with £K;[1+ L(6(n))].
Since it is assumed that EL(&(n)) <o, it follows
that EL(O(n+1))<o and E|H(n+1)’ <. Thus
by induction, it is proved for n< N, EL(@(n))<wx
and E|H(n)| <.

Since as n—o, K; and K, go to infinity,

instead of induction introduced above to prove the
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bound of E[]H (n)”z, another induction method is

introduced. In the last iteration of previous induction,
it is obtained that EL((N,+1))<o and

EHH (N, + 1)]]2 <. Suppose that for some 7n> N,
EL{8(n)) <. Because the second term on the right

side of (16) is F, -measurable, we have
EL(B(n+1)) <. From (12) and (16), we have

eL'g(O(n+1))y(n+1)
+E, . (2Hn+1)! E} ((I))JH(;@ +1))
<—k(B(n+1))

+E, {bj(n«kl)lQr(n-i-1)—EnQr(n+l)H2J.

Since the right side of inequality is F (n+1)-

measurable and converges to zero according to (16),
the left side must be bounded. Consequently if

y(n+l)<w, E|H (n+1)]i2 must be bounded, or
lZl[}H(n+1)||2 <o, Therefore for n>N,, it is also
proved that EHH (n)“2 <. By these two inductions

we have concluded E|H (;e)“z <w foreach n.

3.1.3 Proof on the asymptotic rate of change
conditions
Define

m{t)-1
M(1)= ) ()6 M(i), SM(n)=H(n)-E,H(n),
i=0

where m(f) denotes the unique value of n such

that ¢, <r<t,,. Since it is proved that
E|H (n)”2 <o for each », it is obvious that
SM(n) must be bounded. Now we should prove that

foreach u and 7, the following equation hold.

m(jT+£)-1
lim P{supmax | Y £()SM(@i)| 2 p;=0. (18)
A0 j2n 0<t<T i=m(;T)

Assume that (18) does not hold, then we can choose
asequence {OM(n)} such that

m{ jT+t)-1
> &M

i=m(jT)

lim max
n—w 0<t<T

2z U

Since

m(jT+t)-1 m(jT+T)-1
max| Y e)SM@|< D, e)|FMQ)
05T i=m(yT) i=m(JT)

<[m(JT +T) - m(jT)-Dem(jT)6M",

where SM™ = max

|GM(3)|. 1t follows
m(jT)<i<sm{jT+1)-1

that

lim [m(T +T) - m(jT) - De(m(GTIEM™ > p.

n—w©

lim &(n) > 0.

n—»0

From Assumption 1) we know

Then SM™ must be infinity and growing at least as
O(S_l(n)). That contradicts the previous sentence
that SM(n) is bounded. Therefore (18) holds.

According to Theorem 5.3.2 in [18], the following
conditions for asymptotic rate of change hold:

lim sup max [M° (T +1) - M°(jT)|=0. (19)

3.1.4 Completion of the proof
Applying definition of dM(n) and y(n), we
define the sequence of shifted processes as

m(t,+t)-1 mt,+t)-1
0" =0m+ Y. e(i)+ D, eSM(i). (20)

We have proved that, (16) implies that &(n)
returns to the neighborhood of {8]k(6(¢)) =1 -

2
a)E‘Q’(t)—EnQr(t)H } infinitely often as n— .
Since Q'(n) is bounded, and E, Q’(n)[ is
nonincreasing over iterations, ®(1-a)E|Q"(r)—

2
E”Q’(t)” must be bounded. Define a set,

¥, ={0:L(B)<A}, and let ¥
of the set ¥,. Fix ¢ and

represent the

complement

A>26+0(1- a)E| 0" (n)~E,0" (”)“2 >0, and let

r denote a stopping time such that &(r)e¥;.
Obviously for large n> N, which makes (16) hold,
and &£(n) become trivial, y(n) can not force &(n)
out of W,. Then the only way to force 8"(f) out
of ¥,
{6M;,i>7}. But according to the definition of
M®(r) and (19), it is implied that

infinitely often is by the effects of
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m(n+t)

m% Y. DM ey, =0- @1

n—> .
=7

Therefore for finite and large enough 7, these
martingale difference terms can not force 6”(¢)
from Y5 to ¥, infinity often. This implies &(n)

must converge to the set {@]k(€(¢)=D(1-a)

2
Elo" (1) -E,0" (r)N | with probability one.

Remark 1: Since ¢(n) and ¢,(n) are chosen as
satisfying continuous uniform

0" (n)

random variables

distribution and nonzero expectation, E[b; (n)l

-E,0" (n)”z] must be decreasing, if P* is the
global best solution. As » becomes large enough so
that  by(n) > ©(1-a)?, the
0" (-0 0 )
Obviously the only way to make this set become
{61k(6(t))=0} is to make Q" (n)—>0 as n— o,
or PY(n) and P%(n) approach P*. The key

invariant set s

{61 k(8(1)) = D(1- @) E

factor to make P,-d(n) approach the giobal best

solution P” is to make particles explore the vicinity
around P" . Hence how to improve the opportunity of

exploring around P* is our motivation to introduce
the random velocity £(n) to PSO-CREV algorithm.

3.2. Properties caused by stochastic behavior

Based upon the proof presented in the previous
section, two main properties of PSO-CREV resulting
from stochastic components are proposed.

Property 1: Divergence ahead of Convergence

In the proof, it is mentioned that, before » is large
enough to make (16) hold, the individual updating
principle is nonconvergent so that particle will move
away from the best position recorded by itself and its
neighborhood. This phenomenon can be viewed as a
strong exploration that all particles wander in the
solution space and record the best solutions found so
far. And when n> N, particles start to converge to

the best solutions found so far.
Property 2: Additional Stochastic Search Velocity
The random velocity &(n) is the key improvement

on the PSO-CREV. A nonzero &(n) is very useful to

enhance expleration ability. Moreover the PSO-
CREV with zero E&(n) converges faster than the

one with nonzero E{&(n). Hence in applications
&(n) with zero expectation is more preferable than
nonzero one.

4. STUDY ON PARAMETERS AFFECTING
PSO-CREY PERFORMANCE

In this section, we are going to decide the
parameters by experimental methods, Firstly the
designs of decreasing &£(n) and dynamic stochastic

search velocity &(n) are proposed as follows.

1) Decreasing &(n)
A broadly used form for deceasing ¢ satisfying
Assumption 2) of Theorem 1 is expressed as.

sn)=—"—, (22)

where ¢ and b are two positive scalars.

2) Dynamic stochastic search velocity &(n)
A time-varying &(n)=w(n)é(n) is proposed,
where £(n) represents a stochastic velocity with
zero expectant and constant value range, w(n)

represents a time-varying positive coefficient,
whose dynamic strategy can be designed freely. In
this paper, the strategy of w(n) is defined as

1, n< %Nb y

w(n) = 3 (23)
nw{n-1), nZZNb,

where N, represents the total number of

iterations, and 7 is a positive constant less than 1.
Hence when n< %Ng, a strong velocity is

applied to the particles to enhance their exploration

ability. And in the last quarter of iterations, the

bound of &(n) decreases iteration by iteration, so
that &£(n) has trivial effect on the convergence of

PSO-CREY finally.

Obviously all parameters referred in PSO-CREV
are:

1) Constants in velocity updating: ¢; and c,;

2) o used in position updating;

3) Parameters referred in (23): a and b;

4} The stochastic velocity with constant bound:
¢ (n).

Since any values of these parameters satisfying
requirements in Theorem 1 are valid, we have to use
experimental methods to determine the optimal values
of these parameters. Since the main improvement of
PSO-CREV is to make PSO-CREV be more efficient
to avoid local minima, the primary goal of optimizing
parameters is to make PSO-CREV has strong
exploration ability, while the convergence rate is
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Fig. 3. Test results referred to all possible parameters.

concerned secondarily. Hence the fitness function
with huge local minima around the best solution is
chosen as

D
F)=Y (x,? —~10cos(27x,) + 10).

i=1

Because 5 determines the decreasing rate of
£(n), the intension of stochastic search is limited by

b. Hence the value of » should be determined
firstly. In response to b, the second parameter to be
optimized is g, which affects the span of duration of
divergence ahead of convergence. Once the values of
these two parameters are fixed, ¢; and ¢, are the

next parameters needing optimization, because they
play the roles of amplifying coefficients of cognitive
and social components. Finally & is the last
parameter for test in order to find the optimal value
determining convergence behavior. In one word, the
order of experiments for parameter optimization is
shownas: b=>a=¢,c; = a.

At the beginning, the initial parameters are set to
be: 5=0.05, a=2, ¢=c¢,=05 a=095 Then
once a parameter is optimized, its value is set to the
optimized one, and continue the next experiment for
the next parameter. Each test will be repeated 25 runs
independently. And there are 2000 iterations for each
test. The results of all experiments are shown in Fig. 3
where in each subfigure, X-axis represents the
possible values used for a test, Y-axis represents the
fitness values with respect to different parameter
values after 2000 iterations. It is concluded that the
best parameter values are: a=4, b=0.35 ¢ =c

=4, a=0.6.

5. BENCHMARKS ON PSO-CREY

To investigate the performance of PSO-CREY, in
this section a series of benchmarks is proposed in
which the optimization functions have different
characters. Each experiment includes 2000 iterations.
The dimension of solution space is set to D =30.
All experiments are run 25 times. The results reported
are the averages calculated from all 25 runs. For each
benchmark, the sizes of swarm are chosen as 10, 20,
and 30 respectively.

5.1. Test functions

Four functions are selected for testing, where o
represents the shifted global optima, R represents an
orthogonal matrix to rotate particle’s coordinate. One
can refer to [19] to find their values.

1) Shifted Griewank’s function, X [0 6001".
D 2 D 2.

FEX)=Y ——]}]cos(-5)+1, (Z=X-0).

1(X) 24000 g (\/;) ( )

2) Shifted Schwefel’s problem with noise in fitness,
X e[-100 100]°.

2
Dt
B(X)= Z(ZZJ} 1+ 04N, (Z=X -0),

=1\ j=i

where N(0,1) represents a random value with
Gaussian distribution.
3) Shifted Rosenbrock’s function, X €[50 501°.

D
Fy(X) = Y(1007 - z,,) + (=17,
i=1

(Z=X+1Dxl)'

4) Shifted rotated Rastrigin’s function, X e[-5 517,

D
Fy(X)= Z(Z,? —10cos(2ﬂz,.)+1o),
i=1

(Z=(X-0)R).

5.2. PSO configurations

To compare PSO-CREV performance with other
improvements of PSO, the following PSO algorithms
are chosen for benchmarks, where the maximal
velocity V,,,. 1s set to be the upper limit of the
search range.

1) PSO-CREV (¢ #0): The updating principle is of
the form (7) with strategy of &(n) in the form of
(22) and a decreasing &£(n) whose w(n) is in
the form of (23). All parameters are chosen as:

g=c=4 a=06 a=4, b=035 and
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7=0.99. The lbest version of neighborhood is

used in which each particle exchanges information
with four other particles [20].

PSO-CREV (£=0): All components are the
same as PSO-CREV (£ #0), exceptthat £=0.
GCPSO: The details of GCPSO can be found in
{15]. And the parameters are chosen as:
cr=cr=1.49, the inertia weight is 0.72, A dynamic
strategy of f. and s, is adopted with f, =5 and s,
=15 initially. The gbest version of neighborhood

is used.

MPSO-TVAC: The details of MPSO-TVAC can
be found in [14]. The ranges for ¢, and ¢, are
2.5—0.5 and 0.5—2.5 respectively. The inertia
weight is set to change from 0.9 to 0.4 over the
generations. The mutation step size is set to
change from V4, to 0.1V, over the search. The
Ibest PSO is used.

CPSO-H 4 : The details of CPSO can also be found
in [13]. Solution vector is split into six parts,
where the inertia weight decreases from 0.9 to 0.4
over the search, ¢;=c;=1.49. The [best PSO is
employed.

5.3. Benchmark results

Y

Shifted Griewank’s Function (F(X))

Griewank’s function is multimodal. From the
results of the tests shown in Table 1, the
performance of PSO-CREV with nonzero & is

2)

3)

567

multimodal function.

Schwefel’s problem with disturbance (F(X))
Schwefel’s problem is proposed to compare
performance of all PSOs under the circumstance
that there is disturbance in fitness function. Table
2 shows the results of the tests. Obviously when
the stochastic noise is added to Schwefel’s
problem, the PSO-CREV (£ #0) behaves better

than other algorithms except CPSO-Hg.

Shifted Rosenbrock’s function (F3(X)) and shifted
rotated Rastrigin’s function (F4(X))

These two tests are proposed to check PSO-CREV
performance for complex optimization functions,
where Rosenbrock’s function has a very narrow
path from local minima to the global one, and in
shifted rotated Rastrigin’s function, huge local
minima surround the global best solution, and the
coordinates of particles are rotated. From the
results shown in Table 3, PSO-CREV performs
much better than other algorithms. Hence these
two tests verify the improvement of PSO-CREV,

5.4. Summary on benchmarks

fo
)

2)

From the benchmarks proposed above, the
Hlowing characters can be observed:

Relative to other PSO algorithms, the factor
dominating the PSO-CREV performance is the

additional velocity &, but not the swarm size.

Because of the first character, the performance of
PSO-CREV seems much steady with respect to
different swarm sizes.

very impressive for solving this kind of
Table 1. Comparison results of F(X). Table 2. Comparison results of F,(X).
Griewank’s function ( ) Schwefel’s problem ( /3 )
Algorithm | M Average Std. Dev. Algorithm | M Average Std. Dev.
> =
PSO.CREV ;z 0.5045x 10_2 0.1343x 102 PSOLCREV 10 | 0.1952x10° 55.9361
(& #0) 0.2228x10 0.7314x10 E+0) |20 10.7958 1.0558
30 | 0.1166x10 | 0.7028x107° 30 | 49975 0.6864
PSO-CREV 10 | 0.3043x10* 31.7992 PSOCREY 10 | 0.5686x10° | 0.3285x10*
=0y | 20| 02934x10* 27.5756 E=0) |20] 03613x10° | 0.1551x10%
30 | 0.2905x10* 19.6234 30 | 0.2560x10° | 0.1265x10*
10 0.01681 0.3909x 1072 10 | 0.4983x10% | 0.3496x10*
GCPSO |20 | 0.01623 0.3439%107 GCPSO | 20 | 0.2372x10° | 0.1958x10*
30 | 0.5123x107 | 0.1413x107° 30 | 0.1531x10% | 0.1202x10*
10 0.09561 0.01270 10 | 02329x10% | 0.1493x10*
B}If,i%' 20 | 0.04065 0.7432x1072 krr{f,i%' 20 | 0.1349x10° | 0.1066x10*
30 0.02838 0.7187x107* 30 | 0.9638x10° | 0.7587x10°
10 0.02993 0.6107x1072 10 | 0.4011x10° 73.8478
CPSO-Hy | 20 0.04535 0.7549 x 1072 CPSO-Hg |20 |  0.02832 0.01122
30 | 0.02685 0.4624x1072 30 | 0.7171x1077 | 0.3962x1077
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Table 3. Comparison results of F3(X) and F;(X).

Shifted Rosenbrock’s Function F; Shifted rotated Rastrigin’s Function F}
Algorithm M Average Std. Dev. Average Std. Dev.
10 40.2104 3.4169 76.2730 3.3208
PS((;'S};)EV 20 38.2621 4.7426 60.6241 3.0762
30 35.2396 4.2082 49.8744 1.7776
10 0.9857x107 0.1506x 107 0.3754x10° 11.4447
PSO-CREV
(E=0) 20 0.4335x10° 0.1127x10° 0.2821x10° 11.5913
30 0.2993x10° 0.6292%10° 0.2396x10° 12.4231
10 63.5249 7.0700 0.2657x10° 15.3048
GCPSO 20 54.4399 8.6968 0.2178x10° 12.3657
30 52.7644 7.1727 0.1879x10° 11.4271
10 78.3706 8.3019 0.1199x10° 8.3585
MPSO-TVAC | 20 88.0143 23.2490 96.8357 5.7408
30 57.5908 16.864 90.0168 7.8705
10 55.2673 8.6518 0.1473x10° 8.6037
CPSO- Hg 20 41.6887 5.5179 0.1725x10° 12.2524
30 21.3248 7.3055 0.1691x10° 10.9591
6. APPLICATION OF PSO-CREV FOR y! y!

RECURRENT NN TRAINING

In this section, an application about PSO-CREV in
NN training is presented, where a kind of recurrent

neural network is chosen as the optimization objective.

The dimension of search space involved in PSO-NN
training is always so large that PSO-NN ftraining is
viewed as a good platform to test performance of PSO
algorithms. Roughly speaking, the main idea of PSO-
NN training can be expressed as: Given a multi-layer
neural network, all its weights are combined together
to form a vector which is viewed as a solution vector
in a solution space of PSO. Then a swarm is proposed
whose particles represent such solution candidates.
According to certain criterions, such as minimal root
of mean square error (RMSE), all particles congregate
to a position on which the coordinate represents the
best solution they found. Then the best solution
vectors are the best weights found by PSO.

6.1. Structure of Recurrent NN

A full connected recurrent neural network
(FCRNN), as shown in Fig. 4, is trained to generate
the following temporal trajectories,

3 (1) = (0.35 - 0.0051)s5in(0.5¢) + 0.4,

yg () =(0.25+0.005¢) cos(0.57) + 0.4.

The discrete-time step is set to At =0.2, so that if
the time ranges of the trajectories are limited within

i (i (e

Fig. 4. Full connected recurrent neural network with
20 nodes.

the interval (0,10], there are 50 steps within the
interval. If there is no external input for FCRNN, the
architecture of FCRNN is designed such that there are
20 nodes in the hidden layer and two output nodes in
output layer respectively. Consequently there are
20x20 weights waiting for optimization. Moreover
the NN training algorithm is also required to search
the initial values of outputs of all nodes at the first
step #=0.2. A sigmoid function is chosen as transfer
function for all nodes. For the test, the root mean
square error (RMSE) is chosen as function evaluation
principle, which is of the form

1 50 d 5
<o 2O (ka)—x ke

k=1

RMSE =

1/2 (24)
+ (34 (kA — x5 (kA))? H _
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6.2. Configurations of training algorithms
In addition to PSO-CREV (&#0), other PSO

algorithms referred in the benchmarks are all applied
as comparison, except that PSO-CREV (£(n)=0) is

replaced by another evolutionary technique, genetic
algorithm (GA), where the crossover probability is set
to 0.8, and the mutation probability is chosen as 0.1,
As a comparison with PSO-CREV, the number of
chromosomes is chosen as 30, while the swarm size of
all PSOs is set 10 and 20.

The configurations of all PSO algorithms are the
same as those mentioned in the benchmarks. To test
the main character of PSO-CREV that its particles
have strong exploration ability to search solution
space thoroughly in relative short iterations and with
relative small population size, the number of iterations
for NN training is limited within 1000 iterations,
Accordingly 7 in (23) is set to 0.985 instead of 0.99,

in order that &(») is suppressed quickly in the last
quarter of iterations.

6.3. Results of FCRNN training

Since there are 420 values (including 400 weights
and 20 initial values of all nodes) to be optimized, the
dimension of solution space for PSOs and GA
algorithms is 420. Each training algorithm is executed
for 25 independent runs, so that the averages of the
performance of all algorithms are shown in Table 4.

Obviously for standard GA, the number of 1000
iterations is too short to approach the global best
solution. Hence the results of GA are very poor
comparing with PSOs. The strong exploration ability
brought by &(n) makes PSO-CREV perform better

than other algorithms except CPSO-H,. But from
Table 5 which shows the computation time of all
algorithms relative to PSO-CREYV, the computational
cost of CPSO- Hg is so huge that its computation time
is more than twice of total time consumed by other
algorithms. When swarm size is 10, the performance
of PSO-CREYV nearly catches up to CPSO- Hg. That

Table 4. Comparison results of FCRNN training.

Algorithm | M { Average Std. Dev.
PSO-CREV | 10 | 0.04423 | 0.1137x107>
(6#0) 20| 004181 | 09124x10°3
10 | 0.04841 -2

GOPSO 0.1931x10
201 0.05104 | 0.1552x1072

10 | 0.07667 0.01924

MPSO-TVAC

201 0.04421 | 02251x10°2
10 | 0.04305 -
CPSO-H, 0.9406%10 i
20| 0.03232 | 0.6662x107
GA 30| 02914 0.1616x1072

Table 5. Comparison results of computation time.

Algorithm Time
PSO-CREV (£ #0) 1
GA 1.0404
GCPSO 0.8530
MPSO-TVAC 0.8766
CPSO-Hg 8.0045

The trajectory within [Os, 10s]

08 —— T T —

T
- Output of FCRNN
— — Desired Quiput

08

osf
B U S A

o4k \\\» \\3 / /fj \\ \\ / . /’ \
03f i, X\ ,/ f/ \\ J .

3 \ i
\\ \ 7 / 1 / X
I
o2r 3 /% ’ ) ‘ /
53
1 3 4
, 2

(513 y o

Output

Time (s)

Fig. 5. The trajectory results from the FCRNN
trained by PSO-CREYV with 10 particles.

means the exploration ability brought by & makes

PSO-CREV perform as good as several swarms
working together. Hence compared to CPSO which
increases computational time greatly, PSO-CREV
looks like a more “economical” way to enhance PSO
performance.

Finally as an example, the trajectory generated by
the temporal sequence generator is shown in Fig. 5,
which results from one run.

7. CONCLUSION

In this paper, an improved particle swarm
optimization named PSO-CREV is proposed, which
satisfies the regular stochastic recursion paradigm,
Based on the proof of PSO-CREV convergence, two
main characters are presented in terms of divergence
ahead of convergence and controllable exploration
ability. To select proper parameters used in practice,
novel designs about &(n) and &(m) are proposed.

An experimental method is proposed to determine the
values of parameters which guarantee strong
exploration ability and good convergence rate.
Through the benchmarks testing and the implementa-
tion on FCRNN ftraining, it is verified that PSO-
CREYV can provide a competitive way to improve PSO
algorithm.
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