• 제목/요약/키워드: PSD of Oscillation Signals

검색결과 2건 처리시간 0.016초

선형시변 발진기 위상잡음 이론의 전력 보존성의 증명 (Analytical Proof of Conservation of Power in the LTV Phase Noise Theory for Noisy Oscillators)

  • 전만영
    • 한국전자통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.855-859
    • /
    • 2012
  • 본 연구에서는 선형시변 발진기 위상잡음 이론에 있어서 전력 스펙트럼 밀도식의 일반화된 형태를 유도한다. 유도된 전력 스펙트럼 밀도식을 바탕으로 선형시변 발진기 위상잡음 이론은 발진 신호의 전력 보존성을 예측할 수 있음을 본 연구에서 증명한다. 게다가, 유도된 전력 스펙트럼 밀도식은 선형시변 발진기 위상잡음 이론이 기본 주파수와 그 하모닉을 포함하는 전 주파수 영역에 걸친 전력 스펙트럼의 특성을 설명 할 수 있게 한다.

다중 생체 신호를 통한 손목 혈압 측정의 정확도 향상 (Improvement of the Accuracy of Wrist Noninvasive Blood Pressure Measurement Using Multiple Bio-signals)

  • 정운모;심명헌;정상오;김민용;윤찬솔;정인철;윤형로
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1606-1616
    • /
    • 2011
  • The blood pressure measuring equipment, which is being supplied and used most widely by being recognized convenience and accuracy now generally, is oscillometric blood pressure monitor. However, a change in blood pressure is basically influenced by diverse elements such as each individual's physiological status and physical condition. Thus, the measurement of blood pressure, which used single element called oscillation in blood pressure of being conveyed to cuff, is not considered on physiological elements such as cardiovascular system status and blood vessel stiffness index, and on external elements, thereby being quite in error. Accordingly, this study detected diverse bio-signals and body informations in each individual as the measurement subject such as ECG, PPG, and Korotkoff Sound in order to enhance convenience and accuracy of measuring blood pressure in the complex measurement equipment, thereby having extracted regression method for compensation in error of oscillometric blood pressure measurement on the wrist, and having improved accuracy of measuring blood pressure. To verify a method of improving accuracy, the blood pressure value in each of SBP, DBP, MAP was acquired through 4-stage experimental procedure targeting totally 51 subjects. Prior to experiment, the subjects were divided into two groups such as the experimental group for extracting regression method and the control group for verifying regression method. Its error was analyzed by comparing the reference blood pressure value, which was obtained through the auscultatory method, and the oscillometric blood pressure value on the wrist. To reduce the detected error, the blood pressure compensation regression method was calculated through multiple linear regression analysis on elements of blood pressure, individual body information, PTT, HR, K-Sound PSD change. Verification was carried out on improving significance and accuracy by applying the regression method to the data of control group. In the experimental results, as a result of confirming error on the reference blood pressure value in SBP, DBP, and MAP, which were acquired through applying regression method, the results of $-0.47{\pm}7.45$ mmHg, $-0.23{\pm}7.13$ mmHg, $0.06{\pm}6.39$ mmHg could be obtained. This is not only the numerical value of satisfying the sphygmomanometer reference of AAMI, but also shows the lower result than the numerical value in SBP : $-2.5{\pm}12.2$ mmHg, DBP : $-7.5{\pm}8.4$ mmHg, which is the mean error in the experimental results of Brram's research for verifying accuracy of Omron RX-M, which shows relatively high accuracy among wrist sphygmomanometers. Thus, the blood pressure compensation could be confirmed to be made within significant level.