• Title/Summary/Keyword: PSC I 거더

Search Result 53, Processing Time 0.026 seconds

A Study on the Design Parameters of the PSC I-Type Girders for Long Span Bridges (장지간 교량을 위한 PSC-I형 거더의 단면 설계변수 연구)

  • 심종성;오홍섭;김민수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.13-22
    • /
    • 2000
  • In order to resolve the problem of increasing traffic entailed by the economic development, road system is reorganization and new highways are built, and long span bridges over 40m are being constructed in environmental and aesthetic considerations. Most long span bridges that are currently being constructed are in general steel box girder and preflex girder bridges; however these types of breiges are less efficiency than PSC I-type girder bridges in terms of construction cost and maintenance. Therefore, in these study, structural efficiency of PSC I-type girders based on section parameters, concrete compressive strength and other design parameter is observed to develope new PSC I-type girder for long span bridges. As a results of analysis, most important design parameters that control the stress of the girder are found to be the top flange width and the height of girder. In this light, the relationship between the two variables is determined and cross-section details of the girder that most appropriates for the long span bridges are proposed. The use of high strength concrete appears to increase the general design span however the increase rate of the span from increasing concrete ultimate strength appears to be reduced depending on the span. Also, the optimal girder spacing is determined through the parameter studies of design span using the proposed girder.

An Experimental Study on a Narrow and High Capacity PSC Anchorage (세장한 고하중 PSC 정착장치의 실험적 연구)

  • Jeon, Yong-Sik;kang, Sang-Hoon;Jin, Kyung-Seok;Han, Man-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.39-40
    • /
    • 2009
  • This study is for development the anchorage that for development and practicality a holed precast prestressed concrete girder for forming an I-type Prestressed concrete girder bridge, in which at least one hole is formed in a body portion of the I-type Prestressed concrete girder.

  • PDF

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Design of PSC-I Bridge with Widely Spaced Girder based on Parametric Study (변수연구를 통한 소수주형 PSC-I 거더 설계)

  • 심종성;김민수;김영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.507-512
    • /
    • 2002
  • Prestressed concrete I-girders were used in the bridge applications in the early 1950s. During the last four decades, the most widely used girder length of bridges have been below 30 meters. The main objective of this study is to develope the alternative section for widely spaced girder of 30 meters span bridge. Girder spacing, the number of strands and compressive strength of concrete are major parameters for widely spaced girders. The optimal girder spacing is determined through the parameter studies of design using widely spaced girders. 30m span bridges of widely girder spacing must use high-strength concrete. Although the basic unit cost of concrete is higher for high-strength concrete, it may be partially or even fully offset by reduced quantities of concrete as result of the smaller number of girders used. High-strength concrete girders have more prestressing strands per girder, but the total number of strands for all of the girders is less than that required for the larger number of normal-strength concrete girders. It could design PSC-I Birdge with widely spaced girder owing to high-strength concrete.

  • PDF

Development of Long Span Spliced PSC Girder Bridges (장경간 Spliced PSC 거더교량의 개발)

  • 심종성;한만엽;오흥섭;김정구;김민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.680-685
    • /
    • 1998
  • Prestressed concrete I-girders were used in the bridge applications in the early 1950s. During the last four decades, the most widely used girder length of bridges have been below 30meters. The main objective of this study is to develope the alternative section for long span bridge which exceed 40 meters. The developed Bulb-Tee girder has a wide bottom flange to enhance the compressive strength and to allow placement of a large number of strands in the bottom flange. New bulb-tee shaped PSC girder sections are proposed in this paper. Splicing the technique for long span bridge girder to reduce the self weight is also proposed.

  • PDF

Two-Demensional Nonlinear Analysis of Precast Segmental PSC-I Girder with Wet Joint (습식접합부를 갖는 프리캐스트 세그먼트 PSC-I형 거더의 2차원 비선형해석)

  • Kim, Kwang-Soo;Hong, Sung-Nam;Han, Kyoung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.103-112
    • /
    • 2007
  • The purpose of this study is to evaluate the characteristics of the structural behavior in precast segmental prestressed concrete girders, which consist of five precast segments. These girders were developed to save labor and cost in construction field reducing a term of work. Therefore, four different types of specimens of 25m in length were built, and they were tested and analyzed for observing flexural behavior. The analysis included the investigation of the flexural behaviors in varying tendon amount and at joints using the relationship between moment and deflection. Moreover, nonlinear finite element analysis was utilized to verify the experimental result.

Response Analysis of PSC-I Girder Bridges for Vehicle's Velocity (재하차량 속도에 따른 PSC-I 거더 교량의 거동분석)

  • Park, Moon-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • The response of a bridge can be influenced by span length, bridge's surface condition, vehicle's weight, and vehicle's velocity. It is difficult to predict accurate behavior of a bridge. In the current standard of specifications, such dynamic effect is defined by impact factor and prescribed to consider live load as to increase design load by means of multiplying this value by live load. However, it is not well understood because the Impact factor method differs from every country. Dynamic, static and pseudo-staitic field loading tests on PSC-I girder bridges were carried out to find out the dynamic property of the bridge. This paper is aimed to figure out actual dynamic property of the bridge by using field loading test. An empirical method based on impact factor is widely used and also argued. Displacement and strain response measured from the tests was compared with one from the empirical method. The former seems to be reasonable since it can consider actual response of a bridge through field tests.

Reinforcement Effects using V Type External Strands on PSC I Girder Bridges (V자형 배치 외부강선을 이용한 PSC I거더교의 보강 효과)

  • Back, Seung-Chul;Song, Jae-Ho;Kim, Haeng-Bae;Kim, Suk-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.49-57
    • /
    • 2016
  • This study intended to analyze reinforcement effects of PSC I girder bridges to which prestresses are introduced using V type of external strands. So that series of bridge loading tests are carried out on existing PSC I girder bridge for the cases of before-reinforcement and reinforcement. The measured results from tests being analyzed and compared with the ones from MIDAS structural analyzing program, the reinforcing effects of the reinforcement system adopted in this study were investigated. It is found out that when the V type systems are applied to the bridge girders, the slope of load distribution factor curves become lower improving soundness of bridge upper structure. And also it is confirmed that the reinforcement system in this study can be taken as helpful for improvement of both flexural and shear ability of PSC I girder bridges, as well as dynamic behavior. Furthermore it is found when the elastic pads are applied to the system, dynamic reinforcing effects are maximized.

Experimental Study on Flexural Behavior of PSC I Girder and the Effect of External Prestressing (PSC I합성 거더의 휨 거동 및 외부 강선 보강효과에 관한 실험 연구)

  • Lee, Byeong-Ju;Park, Jae-Guen;Kim, Moon-Young;Shin, Hyun-Mock;Park, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.755-762
    • /
    • 2007
  • For the evaluation of the load carrying capacity of the deteriorated PSC I girder bridge in service load state and the verification of the grade to the reinforcement effect of actual bridge strengthened by external prestressing tendons, the field test using vehicles is applied widely. Because this teat was executed in elastic range, the investigation of the characteristics of behavior caused by live load is only available. And it is impossible to estimate load carrying capacity in limit state and nonlinear behavior after that a crack is appeared. In this study, the 27-year-old prestressed concrete girder bridge is used and various load tests are performed, so we evaluate the behavior characteristics of the bridge in service load state and ultimate load state, and estimate the load carrying capacity of bridge. In addition, the artificial damages are induced from cutting internal tendons, and external tendons is added to strengthen it as much as vanished internal tendons. Next we compare the damage state with the strengthening state. In case of the application of external prestressing method to PSC I girder bridge, the present experiment result may decide more exactly the load carrying capacity of actual bridge, the amount for reinforcement, and the standard of quality control etc. at reinforcement work.

Seismic Behavior and Economic efficiency Analysis of Bridge for PSC I-Shaped Girder of isolated device (지진격리장치를 갖는 PSC I형 거더교량의 지진거동 특성 및 경제성 분석)

  • Shin, Yung-Seok;Park, Jang-Ho;Choi, Kwang-Soo;Hong, Soon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.145-151
    • /
    • 2008
  • The research so far has primarily analyzed efficiency improvement but in this research, it analyzes the characteristics of earthquake behavior, with changed pier heights, through ordinary and seismic analysis. For this, the kind of bridge bearing has been changed against PSC I-shaped bridge, which is mostly used in practice, and at all times earthquake analysis has been performed with through height of pier. Especially considering sectional power resulting from earthquake analysis, displacement of PSC I-shaped bridge bearing, diameter of pier pillar by earthquake load, and upper spare gap have been analyzed. In case of high-pear, seismic isolated device is decided as proper for cars' driving and for management of bridge since it decreases movement of upper structure, than elastic bearing, reducing size of elastic connect device, and it's been analyzed it is effective for improvement of fine view and economic efficiency reducing section of lower bridge structure. Finally, when design PSC I-shaped bridge bearing, for the proper structure and high-pier side, applying seismic isolated device through precise inner analysis is proper than applying equal elastic bearing.