• Title/Summary/Keyword: PSA method

Search Result 217, Processing Time 0.022 seconds

A New Quantification Method for Multi-Unit Probabilistic Safety Assessment (다수기 PSA 수행을 위한 새로운 정량화 방법)

  • Park, Seong Kyu;Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.97-106
    • /
    • 2020
  • The objective of this paper is to suggest a new quantification method for multi-unit probabilistic safety assessment (PSA) that removes the overestimation error caused by the existing delete-term approximation (DTA) based quantification method. So far, for the actual plant PSA model quantification, a fault tree with negates have been solved by the DTA method. It is well known that the DTA method induces overestimated core damage frequency (CDF) of nuclear power plant (NPP). If a PSA fault tree has negates and non-rare events, the overestimation in CDF drastically increases. Since multi-unit seismic PSA model has plant level negates and many non-rare events in the fault tree, it should be very carefully quantified in order to avoid CDF overestimation. Multi-unit PSA fault tree has normal gates and negates that represent each NPP status. The NPP status means core damage or non-core damage state of individual NPPs. The non-core damage state of a NPP is modeled in the fault tree by using a negate (a NOT gate). Authors reviewed and compared (1) quantification methods that generate exact or approximate Boolean solutions from a fault tree, (2) DTA method generating approximate Boolean solution by solving negates in a fault tree, and (3) probability calculation methods from the Boolean solutions generated by exact quantification methods or DTA method. Based on the review and comparison, a new intersection removal by probability (IRBP) method is suggested in this study for the multi-unit PSA. If the IRBP method is adopted, multi-unit PSA fault tree can be quantified without the overestimation error that is caused by the direct application of DTA method. That is, the extremely overestimated CDF can be avoided and accurate CDF can be calculated by using the IRBP method. The accuracy of the IRBP method was validated by simple multi-unit PSA models. The necessity of the IRBP method was demonstrated by the actual plant multi-unit seismic PSA models.

A Study of System Analysis Method for Seismic PSA of Nuclear Power Plants (원자력발전소 지진 PSA의 계통분석방법 개선 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.159-166
    • /
    • 2019
  • The seismic PSA is to probabilistically estimate the potential damage that a large earthquake will cause to a nuclear power plant. It integrates the probabilistic seismic hazard analysis, seismic fragility analysis, and system analysis and is utilized to identify seismic vulnerability and improve seismic capacity of nuclear power plants. Recently, the seismic risk of domestic multi-unit nuclear power plant sites has been evaluated after the Great East Japan Earthquake and Gyeongju Earthquake in Korea. However, while the currently available methods for system analysis can derive basic required results of seismic PSA, they do not provide the detailed results required for the efficient improvement of seismic capacity. Therefore, for in-depth seismic risk evaluation, improved system analysis method for seismic PSA has become necessary. This study develops a system analysis method that is not only suitable for multi-unit seismic PSA but also provides risk information for the seismic capacity improvements. It will also contribute to the enhancement of the safety of nuclear power plants by identifying the seismic vulnerability using the detailed results of seismic PSA. In addition, this system analysis method can be applied to other external event PSAs, such as fire PSA and tsunami PSA, which require similar analysis.

Importance Analysis of In-Service Testing Components for Ulchin Unit 3 Using Risk-Informed In-Service Testing Approach

  • Kang, Dae-il;Kim, Kil-yoo;Ha, Jae-joo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.331-343
    • /
    • 2002
  • We performed an importance analysis of In-Service Testing (157) components for Ulchin Unit 3 using the integrated evaluation method for categorizing component safety significance developed in this study. The developed method is basically aimed at having a PSA expert perform an importance analysis using PSA and its related information. The importance analysis using the developed method is initiated by ranking the component importance using quantitative PSA information. The importance analysis of the IST components not modeled in the PSA is performed through the engineering judgment, based on the expertise of PSA, and the quantitative and qualitative information for the 157 components. The PSA scope for importance analysis includes not only Level 1 and 2 internal PSA but also Level 1 external and shutdown/low power operation PSA. The importance analysis results of valves show that 167 (26.55%) of the 629 IST valves are HSSCs and 462 (73.45%) are LSSCs. Those of pumps also show that 28 (70%)of the 40157 pumps are HSSCs and 12 (30%) are LSSCs.

Multi-unit Level 2 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Cho, Jaehyun;Han, Sang Hoon;Kim, Dong-San;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1234-1245
    • /
    • 2018
  • The risk of multi-unit nuclear power plants (NPPs) at a site has received considerable critical attention recently. However, current probabilistic safety assessment (PSA) procedures and computer code do not support multi-unit PSA because the traditional PSA structure is mostly used for the quantification of single-unit NPP risk. In this study, the main purpose is to develop a multi-unit Level 2 PSA method and apply it to full-power operating six-unit OPR1000. Multi-unit Level 2 PSA method consists of three steps: (1) development of single-unit Level 2 PSA; (2) extracting the mapping data from plant damage state to source term category; and (3) combining multi-unit Level 1 PSA results and mapping fractions. By applying developed multi-unit Level 2 PSA method into six-unit OPR1000, site containment failure probabilities in case of loss of ultimate heat sink, loss of off-site power, tsunami, and seismic event were quantified.

FIRE PROPAGATION EQUATION FOR THE EXPLICIT IDENTIFICATION OF FIRE SCENARIOS IN A FIRE PSA

  • Lim, Ho-Gon;Han, Sang-Hoon;Moon, Joo-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.271-278
    • /
    • 2011
  • When performing fire PSA in a nuclear power plant, an event mapping method, using an internal event PSA model, is widely used to reduce the resources used by fire PSA model development. Feasible initiating events and component failure events due to fire are identified to transform the fault tree (FT) for an internal event PSA into one for a fire PSA using the event mapping method. A surrogate event or damage term method is used to condition the FT of the internal PSA. The surrogate event or the damage term plays the role of flagging whether the system/component in a fire compartment is damaged or not, depending on the fire being initiated from a specified compartment. These methods usually require explicit states of all compartments to be modeled in a fire area. Fire event scenarios, when using explicit identification, such as surrogate or damage terms, have two problems: (1) there is no consideration of multiple fire propagation beyond a single propagation to an adjacent compartment, and (2) there is no consideration of simultaneous fire propagations in which an initiating fire event is propagated to multiple paths simultaneously. The present paper suggests a fire propagation equation to identify all possible fire event scenarios for an explicitly treated fire event scenario in the fire PSA. Also, a method for separating fire events was developed to make all fire events a set of mutually exclusive events, which can facilitate arithmetic summation in fire risk quantification. A simple example is given to confirm the applicability of the present method for a $2{\times}3$ rectangular fire area. Also, a feasible asymptotic approach is discussed to reduce the computational burden for fire risk quantification.

FLOODING PSA BY CONSIDERING THE OPERATING EXPERIENCE DATA OF KOREAN PWRs

  • Choi, Sun-Yeong;Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • The existing flooding Probabilistic Safety Analysis(PSA) was updated to reflect the Korean plant specific operating experience data into the flooding frequency to improve the PSA quality. Both the Nuclear Power Experience(NPE) database and the Korea Nuclear Pipe Failure Database(NuPIPE) databases were used in this study, and from these databases, only the Pressurized Water Reactor(PWR) data were used for the flooding frequencies of the flooding areas in the primary auxiliary building. With these databases and a Bayesian method, the flooding frequencies for the flooding areas were estimated. Subsequently, the Core Damage Frequency(CDF) for the flooding PSA of the Ulchin(UCN) unit 3 and 4 plants based on the Korean Standard Nuclear Power Plant(KSNP) internal full-power PSA model was recalculated. The evaluation results showed that sixteen flooding events are potentially significant according to the screening criterion, while there were two flooding events exceeding the screening criterion of the existing UCN 3 and 4 flooding PSA. The result was compared with two kinds of cases: (1) the flooding frequency and CDF from the method of the existing flooding PSA with the PWR and Boiled Water Reactor(BWR) data of the NPE database and the Maximum Likelihood Estimate(MLE) method and (2) the flooding frequency and CDF with the NPE database(PWR and BWR data), NuPIPE database, and a Bayesian method. From the comparison, a difference in CDF results was revealed more clearly between the CDF from this study and case (2) than between case (1) and case (2). That is, the number of flooding events exceeding the screen criterion further increased when only the PWR data were used for the primary auxiliary building than when the Korean specific data were used.

A Study on the Safety Improvement of PSA System for Hydrogen Separation and Purification (수소분리 및 정제를 위한 PSA(Pressure Swing Adsorption)시스템 안전성향상에 관한 연구)

  • Oh, Sang-Gyu;Lee, Seul-Gi;Lee, Jun-Seo;Ma, Byung-Chol
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.7-19
    • /
    • 2022
  • Hydrogen purification is generally performed through chemical and physical methods. Among various types of purification method PSA(Pressure Swing Adsorption) is widely used with its purification capacity and economic efficiency. In Korea, most of the hydrogen used in automobiles and power generation fuel cells is purified using PSA. Hydrogen produced in petrochemical complexes has difficulties in transportation. The government is planning to install hydrogen extractors that produce hydrogen directly from consumers in connection with the city gas supply chain, and companies are also installing related research and demonstration facilities one after another. Europe and others have recently established safety standards related to PSA and are making efforts for systematic safety management at the construction and operation stage, but domestic safety standards related to PSA are still insufficient. This study aims to identify problems of existing facilities through surveys and risk assessment by companies operating existing PSA, and to prepare domestic technical standards including them in overseas technical standards to promote the safety of new and existing PSA systems.

Efficiency Analysis of PV Tracking System with PSA Algorithm (PSA 알고리즘에 의한 태양광 추적시스템의 효율분석)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.36-44
    • /
    • 2009
  • This paper analyzes efficiency of photovoltaic(PV) tracking system using position solar algorithm(PSA). Solar location tracking system is needed for efficiently and intensively using PV system independent of environmental condition. PV tracking system of program method is presented a high tracking accuracy without the wrong operating in rapidly changing insolation by the clouds and atmospheric condition. Therefore, this paper analyzes efficiency of PV system using PSA algorithm for more correct position tracking of solar. Also, controlled altitude angle and azimuth angle by applied algorithm is compared with data of korea astronomy observatory. And this paper analyzes the tracking error and generation efficiency then proves the validity of applied algorithm.

Vital Area Identification of Nuclear Facilities by using PSA (PSA기법을 이용한 원자력시설의 핵심구역 파악)

  • Lee, Yoon-Hwan;Jung, Woo-Sik;Hwang, Mee-Jeong;Yang, Joon-Eon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.63-68
    • /
    • 2009
  • The urgent VAI method development is required since "The Act of Physical Protection and Radiological Emergency that is established in 2003" requires an evaluation of physical threats in nuclear facilities and an establishment of physical protection in Korea. The VAI methodology is developed to (1) make a sabotage model by reusing existing fire/flooding/pipe break PSA models, (2) calculate MCSs and TEPSs, (3) select the most cost-effective TEPS among many TEPSs, (4) determine the compartments in a selected TEPS as vital areas, and (5) provide protection measures to the vital areas. The developed VAI methodology contains four steps, (1) collecting the internal level 1 PSA model and information, (2) developing the fire/flood/pipe rupture model based on level 1 PSA model, (3) integrating the fire/flood/pipe rupture model into the sabotage model by JSTAR, and (4) calculating MCSs and TEPS. The VAT process is performed through the VIPEX that was developed in KAERI. This methodology serves as a guide to develop a sabotage model by using existing internal and external PSA models. When this methodology is used to identify the vital areas, it provides the most cost-effective method to save the VAI and physical protection costs.

Remaining and emerging issues pertaining to the human reliability analysis of domestic nuclear power plants

  • Park, Jinkyun;Jeon, Hojun;Kim, Jaewhan;Kim, Namcheol;Park, Seong Kyu;Lee, Seungwoo;Lee, Yong Suk
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1297-1306
    • /
    • 2019
  • Probabilistic safety assessments (PSA) have been used for several decades to visualize the risk level of commercial nuclear power plants (NPPs). Since the role of a human reliability analysis (HRA) is to provide human error probabilities for safety critical tasks to support PSA, PSA quality is strongly affected by HRA quality. Therefore, it is important to understand the underlying limitations or problems of HRA techniques. For this reason, this study conducted a survey among 14 subject matter experts who represent the HRA community of domestic Korean NPPs. As a result, five significant HRA issues were identified: (1) providing a technical basis for the K-HRA (Korean HRA) method, and developing dedicated HRA methods applicable to (2) diverse external events to support Level 1 PSA, (3) digital environments, (4) mobile equipment, and (5) severe accident management guideline tasks to support Level 2 PSA. In addition, an HRA method to support multi-unit PSA was emphasized because it plays an important role in the evaluation of site risk, which is one of the hottest current issues. It is believed that creating such a catalog of prioritized issues will be a good indication of research direction to improve HRA and therefore PSA quality.