• Title/Summary/Keyword: PSA Model Improvement

Search Result 6, Processing Time 0.018 seconds

IMPROVEMENT OF THE LOCA PSA MODEL USING A BEST-ESTIMATE THERMAL-HYDRAULIC ANALYSIS

  • Lee, Dong Hyun;Lim, Ho-Gon;Yoon, Han Young;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.541-546
    • /
    • 2014
  • Probabilistic Safety Assessment (PSA) has been widely used to estimate the overall safety of nuclear power plants (NPP) and it provides base information for risk informed application (RIA) and risk informed regulation (RIR). For the effective and correct use of PSA in RIA/RIR related decision making, the risk estimated by a PSA model should be as realistic as possible. In this work, a best-estimate thermal-hydraulic analysis of loss-of-coolant accidents (LOCAs) for the Hanul Nuclear Units 3&4 is first carried out in a systematic way. That is, the behaviors of peak cladding temperature (PCT) were analyzed with various combinations of break sizes, the operating conditions of safety systems, and the operator's action time for aggressive secondary cooling. Thereafter, the results of the thermal-hydraulic analysis have been reflected in the improvement of the PSA model by changing both accident sequences and success criteria of the event trees for the LOCA scenarios.

ORGANIZATIONAL CONTRIBUTIONS TO NUCLEAR POWER PLANT SAFETY

  • GHOSH S. TINA;APOSTOLAKIS GEORGE E.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.207-220
    • /
    • 2005
  • Nuclear power plants (NPP) are complex socio-technological systems that rely on the success of both hardware and human components. Empirical studies of plant operating experience show that human errors are important contributors to accidents and incidents, and that organizational factors play an important role in creating contexts for human errors. Current probabilistic safety assessments (PSA) do not explicitly model the systematic contribution of organizational factors to safety. As some countries, like the United States, are moving towards increased use of risk information in the regulation and operation of nuclear facilities, PSA quality has been identified as an area for improvement. The modeling of human errors, and underlying organizational weaknesses at the root of these errors, are important sources of uncertainty in existing PSAs and areas of on-going research. This paper presents a review of research into the following questions: Is there evidence that organizational factors are important to NPP safety? How do organizations contribute to safety in NPP operations? And how can these organizational contributions be captured more explicitly in PSA? We present a few past incidents that illustrate the potential safety implications of organizational deficiencies, some mechanisms by which organizational factors contribute to NPP risk, and some of the methods proposed in the literature for performing root-cause analyses and including organizational factors in PSA.

The Effect of Vehicles and Pressure Sensitive Adhesives on the Percutaneous Absorption of Quercetin through the Hairless Mouse Skin

  • Kim, Hye-Won;Gwak, Hye-Sun;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.763-768
    • /
    • 2004
  • To investigate the feasibility of developing a new quercetin transdermal system, a preformulation study was carried out. Therefore, the effects of vehicles and pressure-sensitive adhesives (PSA) on the in vitro permeation of quercetin across dorsal hairless mouse skin were studied. Among vehicles used, propylene glycol monocaprylate (PGMC) and propylene glycol mono-laurate were found to have relatively high permeation flux from solution formulation (i.e., the permeation fluxes were 17.25$\pm$1.96 and 9.60$\pm$3.87 $\mu\textrm{g}$/$\textrm{cm}^2$/h, respectively). The release rate from PSA formulations followed a matrix-controlled diffusion model and was mainly affected by the amount of PSA and drug loaded. The overall permeation fluxes from PSA formulations were less than 0.30 $\mu\textrm{g}$/$\textrm{cm}^2$/h, which were significantly lower compared to those obtained from solution formulations. The lower permeation fluxes may be due to the decrease of solubility and diffusivity of quercetin in the PSA layer, considering the fact that the highest flux of 0.26 $\mu\textrm{g}$/$\textrm{cm}^2$/h was obtained with the addition of 0.2% butylated hydroxyanisole in PGMC-diethyl-ene glycol monoethyl ether co-solvents (80-85 : 15-20, v/v). Taken together, these observations indicate that improvement in the solubility and diffusivity of quercetin is necessary to realize fully the clinically applicable transdermal delivery system for the drug.

Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor

  • Ahmed, Ibrahim;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.764-775
    • /
    • 2020
  • Periodic safety reviews (PSRs) are conducted on operating nuclear power plants (NPPs) and have been mandated also for research reactors in Korea, in response to the Fukushima accident. One safety review tool, the probabilistic safety assessment (PSA), aims to identify weaknesses in the design and operation of the research reactor, and to evaluate and compare possible safety improvements. However, the PSA for research reactors is difficult due to scarce data availability. An important element in the analysis of research reactors is the reactor protection system (RPS), with its functionality and importance. In this view, we consider that of the AGN-201K, a zero-power reactor without forced decay heat removal systems, to demonstrate a risk-informed safety improvement study. By incorporating risk- and safety-significance importance measures, and sensitivity and uncertainty analyses, the proposed method identifies critical components in the RPS reliability model, systematically proposes potential safety improvements and ranks them to assist in the decision-making process.

Evaluation of effectiveness of fault-tolerant techniques in a digital instrumentation and control system with a fault injection experiment

  • Kim, Man Cheol;Seo, Jeongil;Jung, Wondea;Choi, Jong Gyun;Kang, Hyun Gook;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.692-701
    • /
    • 2019
  • Recently, instrumentation and control (I&C) systems in nuclear power plants have undergone digitalization. Owing to the unique characteristics of digital I&C systems, the reliability analysis of digital systems has become an important element of probabilistic safety assessment (PSA). In a reliability analysis of digital systems, fault-tolerant techniques and their effectiveness must be considered. A fault injection experiment was performed on a safety-critical digital I&C system developed for nuclear power plants to evaluate the effectiveness of fault-tolerant techniques implemented in the target system. A software-implemented fault injection in which faults were injected into the memory area was used based on the assumption that all faults in the target system will be reflected in the faults in the memory. To reduce the number of required fault injection experiments, the memory assigned to the target software was analyzed. In addition, to observe the effect of the fault detection coverage of fault-tolerant techniques, a PSA model was developed. The analysis of the experimental result also can be used to identify weak points of fault-tolerant techniques for capability improvement of fault-tolerant techniques

A Study on the Influence of Automatic Control System on the Production of Chemical Propylene (자동제어 시스템이 케미칼 프로플린 생산에 미치는 영향 연구)

  • Lee, Oh Sick;Leem, Choon Seong
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.34-42
    • /
    • 2019
  • In this study, we analyzed the effects of the automatic control system on the reactor operation. The Propyrene Reactor process is complex and typically is inefficient and costly due to the lack of productivity. In this study, a research model was presented with the aim of supplementing obstacles to enhance operational efficiency and increase productivity. The configuration of the existing processes was analyzed to complement the hardware and software systems with original models. The composition of the facility is applied to eight reactor units producing 600,000 ton/year propylene per year. As a result of applying the research model, efficiency of operation was increased, and production volume increased from 90 to 95%, along with 91% Reliability. Future studies will present a research model to improve productivity by 100 percent. In addition, we will study the stability and productivity improvement of PSA (Pressure Swing Adsorption) systems, which are the hydrogen production process of propylene by-products.