• Title/Summary/Keyword: PRRSV

Search Result 81, Processing Time 0.026 seconds

Infection patterns of porcine reproductive and respiratory syndrome virus by serological analysis on a farm level (혈청학적 분석을 통한 돼지 생식기호흡기증후군의 농장단위 감염유형)

  • Park, Choi-Kyu;Yoon, Ha-Chung;Lee, Chang-Hee;Jung, Byeong-Yeal;Lee, Kyoung-Ki;Kim, Hyun-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Porcine reproductive and respiratory syndrome (PRRS) is the most economically important viral infectious disease in pig populations worldwide. This study was conducted to better understand the epidemic and dynamics of PRRS virus (PRRSV) on each farm and to evaluate the risk of PRRSV infection in Korea. Interviews with pig farmers were carried out to obtain PRRS vaccination programmes in 60 pig farms throughout Korea. Blood samples were also collected from the 59 pig farms to investigate outbreak patterns of each farm. Vaccination against PRRS was performed in 16.7% farms for breeding pigs and 8.3% of farms for nursery pigs. According to the seroepidemiological analysis, 56 (94.9%) out of 59 farms were considered to be affected by PRRSV infection. The results revealed that 68.9% of sows tested were seroconverted and interestingly, gilt herds had the highest seropositive rate (73%), suggesting that gilts may play a key role in PRRSV transmission in sow herds. Among the PRRS-affected piglet herds, 33 (55.9%), 14 (23.7%) and 6 (10.2%) farms were initially infected with PRRSV during the weaning, suckling and nursery period, respectively. It seems likely, therefore, that PRRSV infection predominantly occurs around the weaning period in piglet herds. Based on antibody seroprevalence levels in both sow and piglet groups, we were able to classify patterns of PRRSV infection per farm unit into 4 categories; category 1 (stable sow groups and non-infected piglet groups), category 2 (unstable sow groups and non-infected piglet groups), category 3 (stable sow groups and infected piglet groups), and category 4 (unstable sow groups and infected piglet groups). Our data suggested that 43 (72.9%) farms were analysed to belong to category 4, which is considered to be at high-risk for PRRS outbreak. Taken together, our information from this study will provide insight into the establishment of an effective control strategy for PRRS on the field.

Pathologic Studies in Piglets Naturally Infected with Porcine Reproductive and Respiratory Syndrome Virus (돼지 생식기 호흡기 증후군 바이러스 자연감염 예의 병리학적 연구)

  • Kim, Jae-Hoon;Hwang, Eui-Kyung;Kim, Yong-Joo;Sohn, Hyun-Joo
    • Korean Journal of Veterinary Pathology
    • /
    • v.1 no.2
    • /
    • pp.125-134
    • /
    • 1997
  • Porcine Reproductive and Respiratory Syndrome Virus infection (PRRSV) was confirmed by serology histopathology immunohistochemistry and bacteriologic examination in young pigs. Four suckling and six weaned piglets submitted from three different farms showed coughing sneezing labored rapid abdominal respiration lethargy and anorexia. Grossly apical and cardiac lung lobes appeared mottled with pale to dark tan discoloration. Submandibular and bronchial lymph nodes were tan and enlarged. All piglets were seropositive for PRRSV antibodies by the indirect immunofluorescent antibody(IFA) test. Microscopically lung lesions were characterized by hyperplasia and hypertrophy of type 2 pneumocytes infiltration of mononuclear cells in alveolar intersitium accumulation of necrotic debris in alveolar spaces accompanied by proliferation of alveolar multinucleated syncytial cells. Using immunohistochemical technique PRRSV antigens were demonstrated in alveolar macrophages and type 2 pneumocytes in histologic lung tissue sections. Also PRRSV antigens were detected in brain lymph nodes spleen and heart. Additionally piglets showed nonsuppurative meningoencephalitis mandibular necrotic lymphadenopathy splenic atrophy and myocardial necrosis.

  • PDF

RT-PCR and nested PCR amplification of the PRRSV genes from boar semen for the rapid and sensitive differential diagnosis (Nested PCR 및 RT-PCR을 이용한 PRRSV의 정액내 신속 감별진단법)

  • Lyoo, Young S.;Park, Choi-kyu;Lee, Chang-hee
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.77-83
    • /
    • 1998
  • 돼지 생식기호흡기증후군(porcine reproductive and respiratory syndrome, PRRS) 바이러스가 웅돈에 감염되었을 경우에는 정충의 기형 등 정액의 질 저하와 더불어 정액에 바이러스가 함유되어 있어 종부시 모돈에 바이러스를 전파하는 것으로 알려져 있다. 감염된 웅돈의 정액으로 인공수정을 실시할 경우 농장의 모돈 전체에 순식간에 바이러스를 전파하여 막대한 피해를 유발할 가능성이 높다. 따라서 감염웅돈을 신속히 검색하여 격리함으로써 피해를 사전에 방지해야 하며, 이를 위해서 웅돈의 감염여부를 신속히 확진하는 진단법의 개발이 필요한 실정이다. PRRS의 진단을 위해서는 바이러스학적인 진단법으로는 바이러스 분리동정, 혈청학적인 방법으로 바이러스 분리동정이 필수적이나 검사시간이 많이 소요되고, 분리동정 자체가 까다로운 단점이 있다. 본 연구에서는 웅돈의 정액내에서 PRRSV 바이러스에 대한 유전자를 RT-PCR법으로 증폭하는 방법을 개발하였으며, 진단의 민감도를 높이기 위하여 Nested PCR법으로 재확인 할 경우, 바이러스의 역가가 $1TCID_{50}$만 함유되어 있어도 진단이 가능한 조건을 확립하였다. 이 방법을 이용할 경우 웅돈의 정액시료에 대한 PRRS 바이러스 감염여부를 신속, 정확하게 검색하여 감염웅돈을 통한 PRRS바이러스의 전파를 미리 차단할 수 있으므로 PRRS방제에 효과적으로 이용될 것으로 사료된다.

  • PDF

Detection of viral pathogens and isolation of porcine circovirus 2 from postweaning multisystemic wasting syndrome-affected piglets (이유자돈 전신소모성증후군 이환 자돈에서의 바이러스성 원인체 검색 및 porcine circovirus 2 분리동정)

  • Park, Choi-Kyu;Kim, Hyun-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.4
    • /
    • pp.561-569
    • /
    • 2004
  • To detect viral agents and isolate porcine circovirus 2 (PCV2), 60 samples of lung and lymph node were collected from 5 to 12 week-old pigs that had showed clinical signs of postweaning multisystemic wasting syndrome (PMWS). Polymerase chain reactions (PCRs) were conducted to identify the viral pathogens including PCV1, PCV2, porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus (PRRSV) that have been considered to be the causal agents of PMWS. Among 60 samples, PCV 2 was detected from 57 samples but no PCV 1 was detected. PRRSV and/or PPV were also detected from 27 (47.4%) samples and 1 (1.8%) sample of these 57 PCV 2-positive samples, respectively. Tissue homogenates were inoculated onto PCV-free PK-15 cell monolayers. Seven isolates were confirmed as PCV 2 by multiplex PCR, indirect immunofluorescence assay, and transmissible electron microscopy. These date suggest that PRRSV is a major cofactors causing PMWS in pigs that were infected with PCV2 in Korea.

A rapid and quantitative fluorescent microsphere immunochromatographic strip test for detection of antibodies to porcine reproductive and respiratory syndrome virus

  • Wei, Yanqiu;Yang, Baozhi;Li, Yunlong;Duan, Yongcheng;Tian, Deyu;He, Baoxiang;Chen, Chuangfu;Liu, Wenjun;Yang, Limin
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.68.1-68.8
    • /
    • 2020
  • A fluorescent microsphere-based immunochromatographic strip test (FICT) was developed for the rapid, sensitive, and quantitative detection of porcine reproductive and respiratory syndrome virus (PRRSV) antibodies at the pen-side. The assay was based on the formation of a sandwich immune-complex (anti-pig IgG-PRRSV antibodies-NSP7/N), which was validated by a comparison with IDEXX-ELISA using 3325 clinical specimens. The diagnostic specificity, sensitivity, and accuracy of FICT were 97.28, 93.41, and 94.95%, respectively. FICT showed a good correlation with the virus neutralization assay. Overall, a promising pen-side diagnostic tool was developed for the rapid and quantitative detection of PRRSV antibodies within 15 min.

Acute porcine reproductive and respiratory syndrome outbreaks in immunized sow herds: from occurrence to stabilization under whole herd vaccination strategy

  • Moon, Sung Ho;Yoo, Sung J.;Noh, Sang Hyun;Kwon, Taeyong;Lee, Dong Uk;Je, Sang H.;Kim, Myung Hyee;Seo, Sang Won;Lyoo, Young S.
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.2
    • /
    • pp.73-79
    • /
    • 2018
  • Outbreaks of porcine reproductive and respiratory syndrome virus (PRRSV) in vaccinated sow herds from occurrence to stabilization were monitored and analyzed in terms of serology and reproductive performance. Three different conventional pig farms experienced severe reproductive failures with the introduction of a type 1 PRRSV. These farms had adopted mass vaccination of sows using a type 2 PRRSV modified live vaccine (MLV). Therefore, to control the type 1 PRRSV, an alternative vaccination program utilizing both type 1 and type 2 MLV was undertaken. Following whole herd vaccinations with both types of MLV, successful stabilization of PRRS outbreaks was identified based on serological data (no viremia and downward trends in ELISA antibody titers in both sows and suckling piglets) and recovery of reproductive performance. Additionally, through comparison of the reproductive parameters between outbreak and non-outbreak periods, it was identified that PRRSV significantly affected the farrowing rate and the number of suckling piglets per litter at all three pig farms. Comparison of reproductive parameters between periods when the different vaccination strategies were applied revealed that the number of piglets born in total and born dead per litter were significantly increased after the introduction of the type 1 PRRS MLV.

Virucidal efficacy of a fumigant containing orth-phenylphenol against classical swine fever virus and porcine reproductive and respiratory syndrome virus (Ortho-phenylphenol을 주성분으로 하는 훈증소독제의 돼지열병바이러스와 돼지생식기호흡기증후군바이러스에 대한 살바이러스 효과)

  • Cha, Chun-Nam;Park, Eun-Kee;Jung, Ji-Youn;Yoo, Chang-Yeul;Kim, Suk;Lee, Hu-Jang
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.2
    • /
    • pp.117-124
    • /
    • 2016
  • In this study, the virucidal efficacy of a fumigant containing 20% ortho-phenylphenol against classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV) was examined. After each carrier deposited with CSFV and PRRSV suspensions was exposed to the fumigant in a $25-m^3$ test room for 15 h, all carriers were neutralized and diluted, and each diluted suspension was inoculated into each proper cell line. After incubation, CSFV and PRRSV viability in each cell line was examined and 50% tissue culture infectious dose $(TCID_{50})/mL$ was calculated. In the results, the concentration of viable virus in all of pathogen control-carriers was more than $2{\times}10^5TCID_{50}/mL$, and there were no cytotoxicity in all of toxicity control-carriers. In addition, the fumigant inactivated ${\geq}4.8{\log}_{10}(TCID_{50}/mL)$ of both CSFV and PRRSV. These findings will be useful for preventing the spread of CSFV and PRRSV infection.

Characterization of the infection pattern of porcine respiratory disease complex (PRDC) in the northern area of Gyeongsangnam-do, Korea (경상남도 북부지역 돼지 사육농가에 대한 돼지호흡기복합감염증 양상 조사)

  • Kim, Min-Hee;Park, Jong-Sik;Lee, Min-Kweon;Kim, Chul-Ho;Shin, Jung-Sup;Kim, Hyun-Joon
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • The prevention of porcine respiratory disease complex (PRDC) is very important because of its high infection-rates in the swine farms and the economic impact in swne industry in Korea. To control the prevalence of PRDC, it is important to know about infection patterns of it. Therefore, this study aimed to investigate the infection patterns of PRDC in the northern area of Gyeongsangnam-do. To this end, the infection of porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), Actinobacillus pleuropneumoniae (APP), Mycoplasma hyopneumoniae (MH), and Swine influenza virus (SIV) were examined using 120 pig lung tissues by PCR analysis. As a result, single pathogen positive specimens were 25.0% and the others (75.0%) were turned out to be PRDC with at least two pathogens. Among PRDCs, 50 specimens (41.7%) was infected with PRRSV, PCV2, MH and SIV. Ten specimens (8.3%) showed triple infections of PRRSV, PCV2 and MH. Double infected specimens for PRRSV and PCV2 were 10 (8.3%), and for PCV2 and APP were 20 (16.7%).

Prevalence and Expression Pattern of Cytokines in Porcine Respiratory Disease Complex (PRDC) (돼지호흡기복합증후군(Porcine respiratory disease complex, PRDC)에 대한 발생상황의 분석 및 cytokine의 변화)

  • Lee, Kyung Hyun;Song, Jae Chan
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1118-1124
    • /
    • 2014
  • Porcine respiratory disease complex (PRDC) is a common respiratory disease in nursery and grow-finishing pigs. A complex of viral and bacterial agents is known to be involved in the etiology of PRDC. The purpose of this study was to investigate common etiologic agents associated with PRDC in the field and compare detection methods for identifying these agents. To understand the mechanism of polymicrobial infection in PRDC, changes in the expression of cytokines were investigated. In 461 pig samples examined, most of the affected pigs ranged from 3 to 10 weeks old (73.4%), and 348 (75.4%) samples were confirmed as polymicrobial infection. Of the polymicrobial-infected cases, two (50.3%), three (32.2%), four (13.8%), five (3.2%), and six (0.5%) agents were detected. Two- or three-agent infections were the most common, with PRRSV/PCV-2 (44.6%) the most common two-agent infection. PRRSV/PCV-2/H. parasuis (11.0%) was the most common three-agent infection. Comparison of two detection methods (PCR and IHC) in the polymicrobial cases showed that 78.4% were PCV-2 positive with the PCR method, and 26.2% were PCV-2 positive with IHC. SIV was 7.8% by the PCR method and 3.7% positive by the IHC. This result indicates that the PCR method is more useful than IHC for detecting causative agents in PRDC. In the analysis of cytokines in the two- and three-agent infected samples, interleukin (IL)-$1{\alpha}$, IL-2, IL-4, IL-6, IL-10, and INF-${\alpha}$ showed the same expression pattern. All cytokines were suppressed, except IL-6. These findings indicate that changes in cytokine expression could be used to understand the mechanism of polymicrobial infection in PRDC.

Single-tube nested reverse transcription-polymerase chain reaction for simultaneous detection of genotyping of porcine reproductive and respiratory syndrome virus without DNA carryover contamination (DNA 교차오염 방지기능이 있는 single-tube nested reverse transcription-polymerase chain reaction을 이용한 돼지생식기호흡기증후군바이러스 유전형 감별진단)

  • Jeong, Pil-Soo;Park, Su-Jin;Kim, Eun-Mi;Park, Ji-Young;Park, Yu-Ri;Kang, Dae-Young;Cha, Hyun-Ouk;Lee, Kyoung-Ki;Kim, Seong-Hee;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • In the study, we developed and evaluated a uracil N-glycosylase (UNG)-supplemented single-tube nested reverse transcription-polymerase chain reaction (UsnRT-PCR) assay that can carried out first-round RT-PCR and second-round nested PCR in a reaction tube without reaction tube opening and can simultaneously detect EU- and NA-PRRSV. The UsnRT-PCR confirmed to have a preventing ability of mis-amplification by contamination of pre-amplified PRRSV DNA from previous UsnRT-PCR. Primer specificities were evaluated with RNAs extracted from 8 viral strains and our results revealed that the primers had a high specificity for both genotypes of PRRSV. The sensitivity of the UsnRT-PCR was 0.1 $TCID_{50}$/0.1 mL for EU- or NA-PRRSV, respectively, which is comparable to that of previously reported real time RT-PCR (RRT-PCR). Clinical evaluation on 110 field samples (60 sera and 50 lung tissues) by the UsnRT-PCR and the RRT-PCR showed that detection rates of the UsnRT-PCR was 70% (77/110), and was relatively higher than that of the RRT-PCR (69.1%, 76/110). The percent positive or negative agreement of the UsnRT-PCR compared to RRT-PCR was 96.1% (73/76) or 90.9% (30/33), showing that the test results of both assays may be different for some clinical samples. Therefore, it is recommend that diagnostic laboratory workers use the two diagnostic assays for the correct diagnosis for the relevant samples in the swine disease diagnostic laboratories. In conclusion, the UsnRT-PCR assay can be applied for the rapid, and reliable diagnosis of PRRSV without concerns about preamplified DNA carryover contamination that can occurred in PCR process in the swine disease diagnostic laboratories.